74HC(T)390 Datasheet by NXP USA Inc.

View All Related Products | Download PDF Datasheet
@ PHILIPS
DATA SHEET
Product specification
File under Integrated Circuits, IC06
December 1990
INTEGRATED CIRCUITS
74HC/HCT390
Dual decade ripple counter
For a complete data sheet, please also download:
The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
December 1990 2
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
FEATURES
Two BCD decade or bi-quinary counters
One package can be configured to divide-by-2, 4, 5, 10,
20, 25, 50 or 100
Two master reset inputs to clear each decade counter
individually
Output capability: standard
ICC category: MSI
GENERAL DESCRIPTION
The 74HC/HCT390 are high-speed Si-gate CMOS devices
and are pin compatible with low power Schottky TTL
(LSTTL). They are specified in compliance with JEDEC
standard no. 7A.
The 74HC/HCT390 are dual 4-bit decade ripple counters
divided into four separately clocked sections. The counters
have two divide-by-2 sections and two divide-by-5
sections. These sections are normally used in a BCD
decade or bi-quinary configuration, since they share a
common master reset input (nMR). If the two master reset
inputs (1MR and 2MR) are used to simultaneously clear all
8 bits of the counter, a number of counting configurations
are possible within one package. The separate clocks
(nCP0and nCP1) of each section allow ripple counter or
frequency division applications of divide-by-2, 4, 5, 10, 20,
25, 50 or 100.
Each section is triggered by the HIGH-to-LOW transition of
the clock inputs (nCP0and nCP1). For BCD decade
operation, the nQ0output is connected to the nCP1 input
of, the divide-by-5 section. For bi-quinary decade
operation, the nQ3 output is connected to the nCP0input
and nQ0becomes the decade output.
The master reset inputs (1MR and 2MR) are active HIGH
asynchronous inputs to each decade counter which
operates on the portion of the counter identified by the “1”
and “2” prefixes in the pin configuration. A HIGH level on
the nMR input overrides the clocks and sets the four
outputs LOW.
QUICK REFERENCE DATA
GND = 0 V; Tamb =25°C; tr=t
f= 6 ns
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD=C
PD ×VCC2×fi+∑ (CL×VCC2×fo) where:
fi= input frequency in MHz
fo= output frequency in MHz
(CL×VCC2×fo) = sum of outputs
CL= output load capacitance in pF
VCC = supply voltage in V
2. For HC the condition is VI= GND to VCC
For HCT the condition is VI= GND to VCC 1.5 V
SYMBOL PARAMETER CONDITIONS TYPICAL UNIT
HC HCT
tPHL/ tPLH propagation delay CL= 15 pF; VCC =5V
n
CP0 to nQ014 18 ns
nCP1 to nQ115 19 ns
nCP1to nQ223 26 ns
nCP1to nQ315 19 ns
nMR to Qn16 18 ns
fmax maximum clock frequency nCP0,nCP166 61 MHz
CIinput capacitance 3.5 3.5 pF
CPD power dissipation capacitance per counter notes 1 and 2 20 21 pF
:90 Eli’- E m. E m, E m; nuns — 3.1: u, I! —0 "9:; "MI A, I: mm M. nun w —5,11 —o,1o — 7,9 PJ‘ b“ crn -n '— ow: Ia mvs a 11 Cr 10 :— Hum
December 1990 3
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
ORDERING INFORMATION
See
“74HC/HCT/HCU/HCMOS Logic Package Information”
.
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
1, 15 1CP0, 2CP0clock input divide-by-2 section (HIGH-to-LOW, edge-triggered)
2, 14 1MR, 2MR asynchronous master reset inputs (active HIGH)
3, 5, 6, 7 1Q0 to 1Q3flip-flop outputs
4, 12 1CP1, 2CP1clock input divide-by-5 section (HIGH-to-LOW, edge triggered)
8 GND ground (0 V)
13, 11, 10, 9 2Q0 to 2Q3flip-flop outputs
16 VCC positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
1,15 “"0 +2 “on a.” comma m: m, "01 5." "02 8J0 1," «MR COUNTER "a: 7.“ mm- a. —[>e a a a D '0 u M l ram). ,
December 1990 4
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
Fig.4 Functional diagram.
BCD COUNT SEQUENCE
FOR 1/2 THE “390”
Notes
1. Output Q0 connected to nCP1
with counter input on nCP0.
H = HIGH voltage level
L = LOW voltage level
COUNT OUTPUTS
Q0Q1Q2Q3
0 LLLL
1 HLLL
2LHLL
3 HHL L
4 LLHL
5HLHL
6 L HHL
7 HHHL
8 LLLH
9 HLLH
BI-QUINARY COUNT SEQUENCE
FOR 1/2 THE “390”
Note
1. Output Q3 connected to nCP0
with counter input on nCP1.
COUNT OUTPUTS
Q0Q1Q2Q3
0 LLLL
1LHLL
2 LLHL
3 L HHL
4 LLLH
5 HLLL
6 HHL L
7HLHL
8 HHHL
9 HLLH
Fig.5 Logic diagram (one counter).
December 1990 5
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
.
Output capability: standard
ICC category: MSI
AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr=t
f= 6 ns; CL=50pF
SYMBOL PARAMETER
Tamb (°C)
UNIT
TEST CONDITIONS
74HC VCC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
tPHL/ tPLH propagation delay
nCP0 to nQ0
47
17
14
145
29
25
180
36
31
220
44
38
ns 2.0
4.5
6.0
Fig.6
tPHL/ tPLH propagation delay
nCP1 to nQ1
50
18
14
155
31
26
195
39
33
235
47
40
ns 2.0
4.5
6.0
Fig.6
tPHL/ tPLH propagation delay
nCP1 to nQ2
74
27
22
210
42
36
265
53
45
315
63
54
ns 2.0
4.5
6.0
Fig.6
tPHL/ tPLH propagation delay
nCP1 to nQ3
50
18
14
155
31
26
195
39
33
235
47
40
ns 2.0
4.5
6.0
Fig.6
tPHL propagation delay
nMR to nQn
52
19
15
165
33
28
205
41
35
250
50
43
ns 2.0
4.5
6.0
Fig.7
tTHL/ tTLH output transition time 19
7
6
75
15
13
95
19
16
110
22
19
ns 2.0
4.5
6.0
Fig.6
tWclock pulse width
nCP0, nCP1
80
16
14
19
7
6
100
20
17
120
24
20
ns 2.0
4.5
6.0
Fig.6
tWmaster reset pulse width
HIGH
80
17
14
28
10
8
105
21
18
130
26
22
ns 2.0
4.5
6.0
Fig.7
trem removal time
nMR to nCPn
75
15
13
22
8
6
95
19
16
110
22
19
ns 2.0
4.5
6.0
Fig.7
fmax maximum clock pulse
frequency
nCP0, nCP1
6.0
30
35
20
60
71
4.8
24
28
4.0
20
24
MHz 2.0
4.5
6.0
Fig.6
Isa
December 1990 6
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see
“74HC/HCT/HCU/HCMOS Logic Family Specifications”
.
Output capability: standard
ICC category: MSI
Note to HCT types
The value of additional quiescent supply current (ICC) for a unit load of 1 is given in the family specifications.
To determine ICC per input, multiply this value by the unit load coefficient shown in the table below.
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; tr=t
f= 6 ns; CL=50pF
INPUT UNIT LOAD COEFFICIENT
nCP0
nCP1, nMR
0.45
0.60
SYMBOL PARAMETER
Tamb (°C)
UNIT
TEST CONDITIONS
74HCT VCC
(V)
WAVEFORMS
+25 40 to +85 40 to +125
min. typ. max. min. max. min. max.
tPHL/ tPLH propagation delay
nCP0 to nQ0
21 34 43 51 ns 4.5 Fig.6
tPHL/ tPLH propagation delay
nCP1 to nQ1
22 38 48 57 ns 4.5 Fig.6
tPHL/ tPLH propagation delay
nCP1 to nQ2
30 51 64 77 ns 4.5 Fig.6
tPHL/ tPLH propagation delay
nCP1 to nQ3
22 38 48 57 ns 4.5 Fig.6
tPHL propagation delay
nMR to nQn
21 36 45 54 ns 4.5 Fig.7
tTHL/ tTLH output transition time 7 15 19 22 ns 4.5 Fig.6
tWclock pulse width
nCP0, nCP1
18 8 23 27 ns 4.5 Fig.6
tWmaster reset pulse width
HIGH
17 10 21 26 ns 4.5 Fig.7
trem removal time
nMR to nCPn
15 8 19 22 ns 4.5 Fig.7
fmax maximum clock pulse
frequency
nCP0, nCP1
27 55 22 18 MHz 4.5 Fig.6
“6—?" mm "on ounuT 72mm "MR Input "a" INPUT "a“ oun-ur 12mm
December 1990 7
Philips Semiconductors Product specification
Dual decade ripple counter 74HC/HCT390
AC WAVEFORMS
PACKAGE OUTLINES
See
“74HC/HCT/HCU/HCMOS Logic Package Outlines”
.
Fig.6 Waveforms showing the clock (nCPn) to output (nQn) propagation delays, the clock pulse width, the output
transition times and the maximum clock frequency.
(1) HC : VM= 50%; VI= GND to VCC.
HCT : VM= 1.3 V; VI= GND to 3 V.
Fig.7 Waveforms showing the master reset (nMR) pulse width, the master reset to output (nQn) propagation
delays and the master reset to clock (nCPn) removal time.
(1) HC : VM= 50%; VI= GND to VCC.
HCT : VM= 1.3 V; VI= GND to 3 V.

Products related to this Datasheet

IC COUNTER RIPPLE DUAL 16DIP
IC DUAL DECADE RIPP COUNT 16-DIP