Kintex UltraScale FPGA Datasheet by AMD

(I XILINXO set of documentation on the U www.xi|in><.com ocumentation="" send="" feed="" back="">
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 1
© Copyright 2013–2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, ISE, Kintex, Spartan, Versal, Virtex, Vivado, Zynq, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. PCI, PCIe, and PCI Express are trademarks of PCI-SIG and used under license. All other trademarks are the
property of their respective owners.
Summary
The Xilinx® Kintex® UltraScale™ FPGAs are available in -3, -2, -1, and -1L speed grades, with -3 having the
highest performance. The -1L devices can operate at either of two VCCINT voltages, 0.95V and 0.90V and
are screened for lower maximum static power. When operated at VCCINT = 0.95V, the speed specification
of a -1L device is the same as the -1 speed grade. When operated at VCCINT = 0.90V, the -1L performance
and static and dynamic power is reduced.
DC and AC characteristics are specified in commercial, extended, industrial, and military temperature
ranges. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical
parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed
grade industrial device are the same as for a -1 speed grade commercial device). However, only selected
speed grades and/or devices are available in each temperature range.
All supply voltage and junction temperature specifications are representative of worst-case conditions.
The parameters included are common to popular designs and typical applications.
This data sheet, part of an overall set of documentation on the UltraScale architecture-based devices, is
available on the Xilinx website at www.xilinx.com/documentation.
DC Characteristics
Kintex UltraScale FPGAs Data Sheet:
DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 Product Specification
Table 1: Absolute Maximum Ratings(1)
Symbol Description Min Max Units
FPGA Logic
VCCINT Internal supply voltage –0.500 1.100 V
VCCINT_IO(2) Internal supply voltage for the I/O banks –0.500 1.100 V
VCCAUX Auxiliary supply voltage –0.500 2.000 V
VCCBRAM Supply voltage for the block RAM memories –0.500 1.100 V
VCCO Output drivers supply voltage for HR I/O banks –0.500 3.400 V
Output drivers supply voltage for HP I/O banks –0.500 2.000 V
VCCAUX_IO(3) Auxiliary supply voltage for the I/O banks –0.500 2.000 V
VREF Input reference voltage –0.500 2.000 V
VIN(4)(5)(6)
I/O input voltage for HR I/O banks –0.400 VCCO + 0.550 V
I/O input voltage for HP I/O banks –0.550 VCCO + 0.550 V
I/O input voltage (when VCCO = 3.3V) for VREF and differential I/O
standards except TMDS_33(7) –0.400 2.625 V
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 2
VBATT Key memory battery backup supply –0.500 2.000 V
IDC Available output current at the pad –20 20 mA
IRMS Available RMS output current at the pad –20 20 mA
GTH and GTY Transceivers
VMGTAVCC Analog supply voltage for the GTH and GTY transmitter and
receiver circuits –0.500 1.100 V
VMGTAVTT Analog supply voltage for the GTH and GTY transmitter and
receiver termination circuits –0.500 1.320 V
VMGTVCCAUX Auxiliary analog Quad PLL (QPLL) voltage supply for the GTH and
GTY transceivers –0.500 1.935 V
VMGTREFCLK GTH and GTY transceiver reference clocks absolute input voltage –0.500 1.320 V
VMGTAVTTRCAL Analog supply voltage for the resistor calibration circuit of the
GTH and GTY transceiver columns –0.500 1.320 V
VIN Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input
voltage –0.500 1.260 V
IDCIN-FLOAT DC input current for receiver input pins DC coupled RX
termination = floating –0
(8) mA
IDCIN-MGTAVTT DC input current for receiver input pins DC coupled RX
termination = VMGTAVTT –10mA
IDCIN-GND DC input current for receiver input pins DC coupled RX
termination = GND –10mA
IDCIN-PROG DC input current for receiver input pins DC coupled RX
termination = Programmable –N/A
(8) mA
IDCOUT-FLOAT DC output current for transmitter pins DC coupled RX
termination = floating –0
(8) mA
IDCOUT-MGTAVTT DC output current for transmitter pins DC coupled RX
termination = VMGTAVTT –6mA
System Monitor
VCCADC System Monitor supply relative to GNDADC –0.500 2.000 V
VREFP System Monitor reference input relative to GNDADC –0.500 2.000 V
Temperature
TSTG Storage temperature (ambient) –65 150 °C
TSOL Maximum soldering temperature for Pb-free component bodies(9) 260 °C
Maximum soldering temperature for Pb/Sn component bodies(9) 220 °C
Table 1: Absolute Maximum Ratings(1) (Cont’d)
Symbol Description Min Max Units
(I XILINX, temperature‘g’ furmatio (UGS76 guidehne (UGS75 1UGS71 e UltraSc 1UGS78 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 3
TjMaximum junction temperature(9) 125 °C
Notes:
1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are
stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under
Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might
affect device reliability.
2. VCCINT_IO must be connected to VCCINT.
3. VCCAUX_IO must be connected to VCCAUX.
4. The lower absolute voltage specification always applies.
5. For I/O operation, see the UltraScale Architecture SelectIO Resources User Guide (UG571).
6. The maximum limit applied to DC signals. For maximum undershoot and overshoot AC specifications, see Table 4 and
Table 5.
7. See Table 12 for TMDS_33 specifications.
8. For more information on supported GTH or GTY transceiver terminations see the UltraScale Architecture GTH Transceiver
User Guide (UG576) or the UltraScale Architecture GTY Transceiver User Guide (UG578).
9. For soldering guidelines and thermal considerations, see the UltraScale and UltraScale+ FPGAs Packaging and Pinout
Specifications (UG575).
Table 2: Recommended Operating Conditions(1)(2)
Symbol Description Min Typ Max Units
FPGA Logic
VCCINT
Internal supply voltage 0.922 0.950 0.979 V
For -1L (0.90V) devices: internal supply voltage 0.880 0.900 0.920 V
For -3 (1.0V only) devices: internal supply voltage 0.970 1.000 1.030 V
VCCINT_IO(3)
Internal supply voltage for the I/O banks 0.922 0.950 0.979 V
For -1L (0.90V) devices: internal supply voltage for the I/O
banks 0.880 0.900 0.920 V
For -3 (1.0V only) devices: internal supply voltage for the
I/O banks 0.970 1.000 1.030 V
VCCBRAM Block RAM supply voltage 0.922 0.950 0.979 V
For -3 (1.0V only) devices: block RAM supply voltage 0.970 1.000 1.030 V
VCCAUX Auxiliary supply voltage 1.746 1.800 1.854 V
VCCO(4)(5) Supply voltage for HR I/O banks 1.140 3.400 V
Supply voltage for HP I/O banks 0.950 1.890 V
VCCAUX_IO(6) Auxiliary I/O supply voltage 1.746 1.800 1.854 V
VIN(7) I/O input voltage –0.200 VCCO + 0.200 V
I/O input voltage (when VCCO =3.3V) for V
REF and
differential I/O standards except TMDS_33(8).– 0.400 2.625 V
IIN(9) Maximum current through any pin in a powered or
unpowered bank when forward biasing the clamp diode. ––10.000mA
VBATT(10) Battery voltage 1.000 1.890 V
GTH and GTY Transceivers
VMGTAVCC(11) Analog supply voltage for the GTH and GTY transceivers(10) 0.970 1.000 1.030 V
VMGTAVTT(11) Analog supply voltage for the GTH and GTY transmitter and
receiver termination circuits 1.170 1.200 1.230 V
VMGTVCCAUX(11) Auxiliary analog QPLL voltage supply for the transceivers 1.750 1.800 1.850 V
VMGTAVTTRCAL(11) Analog supply voltage for the resistor calibration circuit of
the GTH and GTY transceiver columns 1.170 1.200 1.230 V
Table 1: Absolute Maximum Ratings(1) (Cont’d)
Symbol Description Min Max Units
(I XILINX, (U6583 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 4
SYSMON
VCCADC SYSMON supply relative to GNDADC 1.746 1.800 1.854 V
VREFP Externally supplied reference voltage 1.200 1.250 1.300 V
Temperature
Tj
Junction temperature operating range for commercial (C)
temperature devices 0– 85 °C
Junction temperature operating range for extended (E)
temperature devices 0 – 100 °C
Junction temperature operating range for industrial (I)
temperature devices –40 – 100 °C
Junction temperature operating range for military (M)
temperature devices –55 – 125 °C
Notes:
1. All voltages are relative to ground.
2. For the design of the power distribution system consult UltraScale Architecture PCB Design Guide (UG583).
3. VCCINT_IO must be connected to VCCINT.
4. For VCCO_0, the minimum recommended operating voltage for power on and during configuration is 1.425V. After
configuration, data is retained even if VCCO drops to 0V.
5. Includes VCCO of 1.0V (HP I/O only), 1.2V, 1.35V, 1.5V, 1.8V, 2.5V (HR I/O only) at ±5%, and 3.3V (HR I/O only) at
+3/–5%.
6. VCCAUX_IO must be connected to VCCAUX.
7. The lower absolute voltage specification always applies.
8. See Table 12 for TMDS_33 specifications.
9. A total of 200 mA per 52-pin bank should not be exceeded.
10. VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX.
11. Each voltage listed requires filtering as described in UltraScale Architecture GTH Transceiver User Guide (UG576).
Table 2: Recommended Operating Conditions(1)(2) (Cont’d)
Symbol Description Min Typ Max Units
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 5
Table 3: DC Characteristics Over Recommended Operating Conditions
Symbol Description Min Typ(1) Max Units
VDRINT Data retention VCCINT voltage (below which configuration
data might be lost) 0.82 – V
VDRAUX Data retention VCCAUX voltage (below which configuration
data might be lost) 1.50 – V
IREF VREF leakage current per pin 15 µA
IL
Input or output leakage current per pin (sample-tested) 15(2) µA
Input or output leakage current per pin for XQ devices
(sample-tested) ––20
(2) µA
CIN(3) Die input capacitance at the pad (HP I/O) 3.75 pF
Die input capacitance at the pad (HR I/O) 7.00 pF
IRPU
Pad pull-up (when selected) at VIN =0V, V
CCO =3.3V 75 175 µA
Pad pull-up (when selected) at VIN =0V, V
CCO =2.5V 50 169 µA
Pad pull-up (when selected) at VIN =0V, V
CCO =1.8V 60 678 µA
Pad pull-up (when selected) at VIN =0V, V
CCO =1.5V 30 450 µA
Pad pull-up (when selected) at VIN =0V, V
CCO =1.2V 10 262 µA
IRPD Pad pull-down (when selected) at VIN =3.3V 60 190 µA
Pad pull-down (when selected) at VIN =1.8V 29 685 µA
ICCADC Analog supply current per SYSMON instance in powered up
state. 19.2 mA
IBATT(4) Battery supply current 150 nA
Calibrated programmable on-die termination (DCI) in HP I/O banks(6) (measured per JEDEC specification)
R(7)
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_40 –10%(5) 40 +10%(5)
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_48 –10%(5) 48 +10%(5)
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_60 –10%(5) 60 +10%(5)
Programmable input termination to VCCO where
ODT = RTT_40 –10%(5) 40 +10%(5)
Programmable input termination to VCCO where
ODT = RTT_48 –10%(5) 48 +10%(5)
Programmable input termination to VCCO where
ODT = RTT_60 –10%(5) 60 +10%(5)
Programmable input termination to VCCO where
ODT = RTT_120 –10%(5) 120 +10%(5)
Programmable input termination to VCCO where
ODT = RTT_240 –10%(5) 240 +10%(5)
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 6
Uncalibrated programmable on-die termination in HP I/Os banks (measured per JEDEC specification)
R(7)
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_40 –50% 40 +50%
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_48 –50% 48 +50%
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_60 –50% 60 +50%
Programmable input termination to VCCO where
ODT = RTT_40 –50% 40 +50%
Programmable input termination to VCCO where
ODT = RTT_48 –50% 48 +50%
Programmable input termination to VCCO where
ODT = RTT_60 –50% 60 +50%
Programmable input termination to VCCO where
ODT = RTT_120 –50% 120 +50%
Programmable input termination to VCCO where
ODT = RTT_240 –50% 240 +50%
Uncalibrated programmable on-die termination in HR I/O banks (measured per JEDEC specification)
R(7)
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_40 –50% 40 +50%
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_48 –50% 48 +50%
Thevenin equivalent resistance of programmable input
termination to VCCO/2 where ODT = RTT_60 –50% 60 +50%
Internal VREF
50% VCCO VCCO x
0.49 VCCO x
0.50 VCCO x
0.51 V
70% VCCO VCCO x
0.69 VCCO x
0.70 VCCO x
0.71 V
Differential
termination Programmable differential termination (TERM_100) 100
n Temperature diode ideality factor 1.002
r Temperature diode series resistance 2
Notes:
1. Typical values are specified at nominal voltage, 25°C.
2. For HP I/O banks with a VCCO of 1.8V and separated VCCO and VCCAUX_IO power supplies, the IL maximum current is 70 µA.
3. This measurement represents the die capacitance at the pad, not including the package.
4. Maximum value specified for worst case process at 25°C. For the XCKU085, XCKU115, and XQKU115 devices, multiply the
value by the number of super-logic regions (SLRs) in the device.
5. If VRP resides at a different bank (DCI cascade), the range increases to ±15%.
6. VRP resistor tolerance is (240 ±1%)
7. On-die input termination resistance, for more information see the UltraScale Architecture SelectIO Resources User Guide
(UG571).
Table 3: DC Characteristics Over Recommended Operating Conditions (Cont’d)
Symbol Description Min Typ(1) Max Units
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 7
Table 4: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for HR I/O Banks(1)(2)
AC Voltage Overshoot % of UI at –40°C to 100°C AC Voltage Undershoot % of UI at –40°C to 100°C
VCCO + 0.30 100% –0.30 100%
VCCO + 0.35 100% –0.35 70.00%
VCCO + 0.40 100% –0.40 27.00%
VCCO + 0.45 100% –0.45 10.00%
VCCO + 0.50 85.00% –0.50 5.00%
VCCO + 0.55 70.00% –0.55 2.10%
VCCO + 0.60 46.60% –0.60 1.50%
VCCO + 0.65 21.20% –0.65 1.10%
VCCO + 0.70 9.75% –0.70 0.60%
VCCO + 0.75 4.55% –0.75 0.45%
VCCO + 0.80 2.15% –0.80 0.20%
VCCO + 0.85 1.00% –0.85 0.10%
VCCO + 0.90 0.50% –0.90 0.05%
VCCO + 0.95 0.25% –0.95 0.05%
Notes:
1. A total of 200 mA per bank should not be exceeded.
2. For UI smaller than 20 µs.
Table 5: VIN Maximum Allowed AC Voltage Overshoot and Undershoot for HP I/O Banks(1)(2)
AC Voltage Overshoot % of UI at –40°C to 100°C AC Voltage Undershoot % of UI at –40°C to 100°C
VCCO + 0.05 100% –0.05 100%
VCCO + 0.10 100% –0.10 100%
VCCO + 0.15 100% –0.15 100%
VCCO + 0.20 100% –0.20 100%
VCCO + 0.25 100% –0.25 100%
VCCO + 0.30 100% –0.30 100%
VCCO + 0.35 92.00% –0.35 92.00%
VCCO + 0.40 70.00% –0.40 40.00%
VCCO + 0.45 30.00% –0.45 15.00%
VCCO + 0.50 15.00% –0.50 10.00%
VCCO + 0.55 10.00% –0.55 4.00%
VCCO + 0.60 8.00% –0.60 0.00%
VCCO + 0.65 6.00% –0.65 0.00%
VCCO + 0.70 4.00% –0.70 0.00%
VCCO + 0.75 2.00% –0.75 0.00%
VCCO + 0.80 2.00% –0.80 0.00%
VCCO + 0.85 2.00% –0.85 0.00%
Notes:
1. A total of 200 mA per bank should not be exceeded.
2. For UI smaller than 20 µs.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 8
Table 6: Typical Quiescent Supply Current
Symbol Description Device
Speed Grade and
VCCINT Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
ICCINTQ Quiescent VCCINT supply current
XCKU025 N/A 998 998 N/A N/A mA
XCKU035 1097 998 998 998 907 mA
XCKU040 1097 998 998 998 907 mA
XCKU060 1590 1446 1446 1446 1315 mA
XCKU085 3181 2893 2893 2893 2631 mA
XCKU095 N/A 2100 2100 N/A N/A mA
XCKU115 3181 2893 2893 2893 2631 mA
XQKU040 N/A 998 998 N/A N/A mA
XQKU060 N/A 1446 1446 N/A N/A mA
XQKU095 N/A 2100 2100 N/A N/A mA
XQKU115 N/A 2893 2893 N/A N/A mA
ICCINT_IOQ Quiescent current for VCCINT_IO
supply
XCKU025 N/A 87 87 N/A N/A mA
XCKU035 98 87 87 87 77 mA
XCKU040 98 87 87 87 77 mA
XCKU060 118 105 105 105 93 mA
XCKU085 236 210 210 210 187 mA
XCKU095 N/A 143 143 N/A N/A mA
XCKU115 236 210 210 210 187 mA
XQKU040 N/A 87 87 N/A N/A mA
XQKU060 N/A 105 105 N/A N/A mA
XQKU095 N/A 143 143 N/A N/A mA
XQKU115 N/A 210 210 N/A N/A mA
ICCOQ Quiescent VCCO supply current
XCKU025 N/A 1 1 N/A N/A mA
XCKU03511111mA
XCKU04011111mA
XCKU06011111mA
XCKU08511111mA
XCKU095 N/A 1 1 N/A N/A mA
XCKU11511111mA
XQKU040 N/A 1 1 N/A N/A mA
XQKU060 N/A 1 1 N/A N/A mA
XQKU095 N/A 1 1 N/A N/A mA
XQKU115 N/A 1 1 N/A N/A mA
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 9
ICCAUXQ Quiescent VCCAUX supply current
XCKU025 N/A 145 145 N/A N/A mA
XCKU035 145 145 145 145 145 mA
XCKU040 145 145 145 145 145 mA
XCKU060 188 188 188 188 188 mA
XCKU085 376 376 376 376 376 mA
XCKU095 N/A 273 273 N/A N/A mA
XCKU115 376 376 376 376 376 mA
XQKU040 N/A 145 145 N/A N/A mA
XQKU060 N/A 188 188 N/A N/A mA
XQKU095 N/A 273 273 N/A N/A mA
XQKU115 N/A 376 376 N/A N/A mA
ICCAUX_IOQ Quiescent VCCAUX_IO supply current
XCKU025 N/A 66 66 N/A N/A mA
XCKU035 66 66 66 66 66 mA
XCKU040 66 66 66 66 66 mA
XCKU060 83 83 83 83 83 mA
XCKU085 165 165 165 165 165 mA
XCKU095 N/A 124 124 N/A N/A mA
XCKU115 165 165 165 165 165 mA
XQKU040 N/A 66 66 N/A N/A mA
XQKU060 N/A 83 83 N/A N/A mA
XQKU095 N/A 124 124 N/A N/A mA
XQKU115 N/A 165 165 N/A N/A mA
ICCBRAMQ Quiescent VCCBRAM supply current
XCKU025 N/A 39 39 N/A N/A mA
XCKU035 42 39 39 39 39 mA
XCKU040 42 39 39 39 39 mA
XCKU060 76 69 69 69 69 mA
XCKU085 153 139 139 139 139 mA
XCKU095 N/A 111 111 N/A N/A mA
XCKU115 153 139 139 139 139 mA
XQKU040 N/A 39 39 N/A N/A mA
XQKU060 N/A 69 69 N/A N/A mA
XQKU095 N/A 111 111 N/A N/A mA
XQKU115 N/A 139 139 N/A N/A mA
Notes:
1. Typical values are specified at nominal voltage, 85°C junction temperatures (Tj) with single-ended SelectIO™ resources.
2. Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins
are 3-state and floating.
3. Use the Xilinx Power Estimator (XPE) spreadsheet tool (download at www.xilinx.com/power) to estimate static power
consumption for conditions other than those specified.
Table 6: Typical Quiescent Supply Current (Cont’d)
Symbol Description Device
Speed Grade and
VCCINT Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
(I X|L|NX. Send Feedback
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 10
Power-On/Off Power Supply Sequencing
The recommended power-on sequence is VCCINT/VCCINT_IO, VCCBRAM, VCCAUX/VCCAUX_IO, and VCCO to
achieve minimum current draw and ensure that the I/Os are 3-stated at power-on. The recommended
power-off sequence is the reverse of the power-on sequence. If VCCINT/VCCINT_IO and VCCBRAM have the
same recommended voltage levels, they can be powered by the same supply and ramped simultaneously.
VCCINT_IO must be connected to VCCINT. If VCCAUX/VCCAUX_IO and VCCO have the same recommended
voltage levels, they can be powered by the same supply and ramped simultaneously. VCCAUX and VCCAUX_IO
must be connected together. When the current minimums are met, the device powers on after the
VCCINT/VCCINT_IO, VCCBRAM, VCCAUX/VCCAUX_IO, and VCCO supplies have all passed through their power-on
reset threshold voltages. The device must not be configured until after VCCINT is applied.
VCCADC and VREF can be powered at any time and have no power-up sequencing recommendations.
The recommended power-on sequence to achieve minimum current draw for the GTH or GTY transceivers
is VCCINT, VMGTAVCC, VMGTAVTT OR VMGTAVCC, VCCINT, VMGTAVTT. There is no recommended sequencing for
VMGTVCCAUX. Both VMGTAVCC and VCCINT can be ramped simultaneously. The recommended power-off
sequence is the reverse of the power-on sequence to achieve minimum current draw. If these
recommended sequences are not met, current drawn from VMGTAVTT can be higher than specifications
during power-up and power-down.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 11
Table 7 shows the minimum current, in addition to ICCQ, that are required by Kintex UltraScale FPGAs for
proper power-on and configuration. If the current minimums shown in Table 6 and Tab l e 7 are met, the
device powers on after all four supplies have passed through their power-on reset threshold voltages. The
device must not be configured until after VCCINT is applied. Once initialized and configured, use the Xilinx
Power Estimator (XPE) tools to estimate current drain on these supplies.
Table 8 shows the power supply ramp time.
Table 7: Power-on Current by Device
Device ICCINTMIN +I
CCINT_IOMIN ICCO ICCAUXMIN +I
CCAUX_IOMIN ICCBRAMMIN Units
XCKU025 ICCINTQ +I
CCINT_IOQ + 2400 ICCO_0Q + 100 ICCAUXQ +I
CCAUX_IOQ +380 I
CCBRAMQ +50 mA
XCKU035 ICCINTQ +I
CCINT_IOQ + 2400 ICCO_0Q + 100 ICCAUXQ +I
CCAUX_IOQ +380 I
CCBRAMQ +50 mA
XCKU040 ICCINTQ +I
CCINT_IOQ + 2400 ICCO_0Q + 100 ICCAUXQ +I
CCAUX_IOQ +380 I
CCBRAMQ +50 mA
XCKU060 ICCINTQ +I
CCINT_IOQ + 3284 ICCO_0Q + 137 ICCAUXQ +I
CCAUX_IOQ +520 I
CCBRAMQ + 100 mA
XCKU085 ICCINTQ +I
CCINT_IOQ + 6568 ICCO_0Q + 274 ICCAUXQ +I
CCAUX_IOQ + 1040 ICCBRAMQ + 137 mA
XCKU095 ICCINTQ +I
CCINT_IOQ + 3300 ICCO_0Q +40 I
CCAUXQ +I
CCAUX_IOQ +400 I
CCBRAMQ + 150 mA
XCKU115 ICCINTQ +I
CCINT_IOQ + 6568 ICCO_0Q + 274 ICCAUXQ +I
CCAUX_IOQ + 1040 ICCBRAMQ + 137 mA
XQKU040 ICCINTQ +I
CCINT_IOQ + 2400 ICCO_0Q + 100 ICCAUXQ +I
CCAUX_IOQ +380 I
CCBRAMQ +50 mA
XQKU060 ICCINTQ +I
CCINT_IOQ + 3284 ICCO_0Q + 137 ICCAUXQ +I
CCAUX_IOQ +520 I
CCBRAMQ + 100 mA
XQKU095 ICCINTQ +I
CCINT_IOQ + 3300 ICCO_0Q +40 I
CCAUXQ +I
CCAUX_IOQ +400 I
CCBRAMQ + 150 mA
XQKU115 ICCINTQ +I
CCINT_IOQ + 6568 ICCO_0Q + 274 ICCAUXQ +I
CCAUX_IOQ + 1040 ICCBRAMQ + 137 mA
Table 8: Power Supply Ramp Time
Symbol Description Min Max Units
TVCCINT Ramp time from GND to 95% of VCCINT 0.2 40 ms
TVCCINT_IO Ramp time from GND to 95% of VCCINT_IO 0.2 40 ms
TVCCO Ramp time from GND to 95% of VCCO 0.2 40 ms
TVCCAUX Ramp time from GND to 95% of VCCAUX 0.2 40 ms
TVCCBRAM Ramp time from GND to 95% of VCCBRAM 0.2 40 ms
TMGTAVCC Ramp time from GND to 95% of VMGTAVCC 0.2 40 ms
TMGTAVTT Ramp time from GND to 95% of VMGTAVTT 0.2 40 ms
TMGTVCCAUX Ramp time from GND to 95% of VMGTVCCAUX 0.2 40 ms
(I XILINX, efau‘t I/ 1UGS71 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 12
DC Input and Output Levels
Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the
recommended operating conditions at the VOL and VOH test points. Only selected standards are tested.
These are chosen to ensure that all standards meet their specifications. The selected standards are tested
at a minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample
tested.
Table 9: SelectIO DC Input and Output Levels For HR I/O Banks(1)(2)
I/O
Standard VIL VIH VOL VOH IOL IOH
V, Min V, Max V, Min V, Max V, Max V, Min mA mA
HSTL_I –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 0.400 VCCO – 0.400 8.0 –8.0
HSTL_I_18 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 0.400 VCCO – 0.400 8.0 –8.0
HSTL_II –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 0.400 VCCO – 0.400 16.0 –16.0
HSTL_II_18 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 0.400 VCCO – 0.400 16.0 –16.0
HSUL_12 –0.300 VREF – 0.130 VREF +0.130 V
CCO + 0.300 20% VCCO 80% VCCO 0.1 –0.1
LVCMOS12 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.400 VCCO – 0.400 Note 3 Note 3
LVCMOS15 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.450 VCCO – 0.450 Note 4 Note 4
LVCMOS18 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.450 VCCO – 0.450 Note 4 Note 4
LVCMOS25 –0.300 0.700 1.700 VCCO + 0.300 0.400 VCCO – 0.400 Note 4 Note 4
LVCMOS33 –0.300 0.800 2.000 3.400 0.400 VCCO – 0.400 Note 4 Note 4
LVTTL –0.300 0.800 2.000 3.400 0.400 2.400 Note 4 Note 4
SSTL12 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 VCCO/2–0.150 V
CCO/2 + 0.150 14.25 –14.25
SSTL135 –0.300 VREF – 0.090 VREF +0.090 V
CCO + 0.300 VCCO/2–0.150 V
CCO/2 + 0.150 13.0 –13.0
SSTL135_R –0.300 VREF – 0.090 VREF +0.090 V
CCO + 0.300 VCCO/2–0.150 V
CCO/2 + 0.150 8.9 –8.9
SSTL15 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 VCCO/2–0.175 V
CCO/2 + 0.175 13.0 –13.0
SSTL15_R –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 VCCO/2–0.175 V
CCO/2 + 0.175 8.9 –8.9
SSTL18_I –0.300 VREF – 0.125 VREF +0.125 V
CCO + 0.300 VCCO/2–0.470 V
CCO/2 + 0.470 8.0 –8.0
SSTL18_II –0.300 VREF – 0.125 VREF +0.125 V
CCO + 0.300 VCCO/2–0.600 V
CCO/2 + 0.600 13.4 –13.4
Notes:
1. Tested according to relevant specifications.
2. Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture
SelectIO Resources User Guide (UG571).
3. Supported drive strengths of 4, 8, or 12 mA in HR I/O banks.
4. Supported drive strengths of 4, 8, 12, or 16 mA in HR I/O banks.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 13
Table 10: SelectIO DC Input and Output Levels for HP I/O Banks(1)(2)(3)
I/O
Standard VIL VIH VOL VOH IOL IOH
V, Min V, Max V, Min V, Max V, Max V, Min mA mA
HSTL_I –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 0.400 VCCO – 0.400 5.8 –5.8
HSTL_I_12 –0.300 VREF – 0.080 VREF +0.080 V
CCO + 0.300 25% VCCO 75% VCCO 4.1 –4.1
HSTL_I_18 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 0.400 VCCO – 0.400 6.2 –6.2
HSUL_12 –0.300 VREF – 0.130 VREF +0.130 V
CCO + 0.300 20% VCCO 80% VCCO 0.1 –0.1
LVCMOS12 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.400 VCCO – 0.400 Note 4 Note 4
LVCMOS15 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.450 VCCO – 0.450 Note 5 Note 5
LVCMOS18 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.450 VCCO – 0.450 Note 5 Note 5
LVDCI_15 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.450 VCCO – 0.450 7.0 –7.0
LVDCI_18 –0.300 35% VCCO 65% VCCO VCCO + 0.300 0.450 VCCO – 0.450 7.0 –7.0
SSTL12 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 VCCO/2–0.150 V
CCO/2 + 0.150 8.0 –8.0
SSTL135 –0.300 VREF – 0.090 VREF +0.090 V
CCO + 0.300 VCCO/2–0.150 V
CCO/2 + 0.150 9.0 –9.0
SSTL15 –0.300 VREF – 0.100 VREF +0.100 V
CCO + 0.300 VCCO/2–0.175 V
CCO/2 + 0.175 10.0 –10.0
SSTL18_I –0.300 VREF – 0.125 VREF +0.125 V
CCO + 0.300 VCCO/2–0.470 V
CCO/2 + 0.470 7.0 –7.0
Notes:
1. Tested according to relevant specifications.
2. Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture
SelectIO Resources User Guide (UG571).
3. POD10 and POD12 DC input and output levels are shown in Table 11, Table 16, and Table 17.
4. Supported drive strengths of 2, 4, 6, or 8 mA in HP I/O banks.
5. Supported drive strengths of 2, 4, 6, 8, or 12 mA in HP I/O banks.
Table 11: DC Input Levels for Single-ended POD10 and POD12 I/O Standards(1)(2)
I/O
Standard VIL VIH
V, Min V, Max V, Min V, Max
POD10 –0.300 VREF – 0.068 VREF +0.068 V
CCO + 0.300
POD12 –0.300 VREF – 0.068 VREF +0.068 V
CCO + 0.300
Notes:
1. Tested according to relevant specifications.
2. Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture
SelectIO Resources User Guide (UG571).
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 14
Table 12: Differential SelectIO DC Input and Output Levels
I/O
Standard VICM (V)(1) VID(V)(2) VOCM(V)(3) VOD(V)(4)
Min Typ Max Min Typ Max Min Typ Max Min Typ Max
BLVDS_25 0.300 1.200 1.425 0.100 1.250 Note 5
MINI_LVDS_25 0.300 1.200 VCCAUX 0.200 0.400 0.600 1.000 1.200 1.485 0.300 0.450 0.600
SUB_LVDS 0.500 0.900 1.300 0.070 0.700 0.900 1.100 0.100 0.150 0.200
LVPECL 0.300 1.200 1.425 0.100 0.350 0.600
PPDS_25 0.200 0.900 VCCAUX 0.100 0.250 0.400 0.500 0.950 1.400 0.100 0.250 0.400
RSDS_25 0.300 0.900 1.500 0.100 0.350 0.600 1.000 1.200 1.485 0.100 0.350 0.600
SLVS_400_18 0.070 0.200 0.330 0.140 0.450
SLVS_400_25 0.070 0.200 0.330 0.140 0.450
TMDS_33 2.700 2.965 3.230 0.150 0.675 1.200 VCCO – 0.405 VCCO – 0.300 VCCO – 0.190 0.400 0.600 0.800
Notes:
1. VICM is the input common mode voltage.
2. VID is the input differential voltage (Q – Q).
3. VOCM is the output common mode voltage.
4. VOD is the output differential voltage (Q – Q).
5. VOD for BLVDS will vary significantly depending on topology and loading.
6. LVDS_25 is specified in Table 18.
7. LVDS is specified in Table 19.
Table 13: Complementary Differential SelectIO DC Input and Output Levels for HR I/O Banks
I/O Standard VICM (V)(1) VID (V)(2) VOL (V)(3) VOH (V)(4) IOL IOH
Min Typ Max Min Max Max Min mA mA
DIFF_HSTL_I 0.300 0.750 1.125 0.100 0.400 VCCO – 0.400 8.0 –8.0
DIFF_HSTL_I_18 0.300 0.900 1.425 0.100 0.400 VCCO – 0.400 8.0 –8.0
DIFF_HSTL_II 0.300 0.750 1.125 0.100 0.400 VCCO – 0.400 16.0 –16.0
DIFF_HSTL_II_18 0.300 0.900 1.425 0.100 0.400 VCCO – 0.400 16.0 –16.0
DIFF_HSUL_12 0.300 0.600 0.850 0.100 20% VCCO 80% VCCO 0.1 –0.1
DIFF_SSTL12 0.300 0.600 0.850 0.100 (VCCO/2) – 0.150 (VCCO/2) + 0.150 14.25 –14.25
DIFF_SSTL135 0.300 0.675 1.000 0.100 (VCCO/2) – 0.150 (VCCO/2) + 0.150 13.0 –13.0
DIFF_SSTL135_R 0.300 0.675 1.000 0.100 (VCCO/2) – 0.150 (VCCO/2) + 0.150 8.9 –8.9
DIFF_SSTL15 0.300 0.750 1.125 0.100 (VCCO/2) – 0.175 (VCCO/2) + 0.175 13.0 –13.0
DIFF_SSTL15_R 0.300 0.750 1.125 0.100 (VCCO/2) – 0.175 (VCCO/2) + 0.175 8.9 –8.9
DIFF_SSTL18_I 0.300 0.900 1.425 0.100 (VCCO/2) – 0.470 (VCCO/2) + 0.470 8.0 –8.0
DIFF_SSTL18_II 0.300 0.900 1.425 0.100 (VCCO/2) – 0.600 (VCCO/2) + 0.600 13.4 –13.4
Notes:
1. VICM is the input common mode voltage.
2. VID is the input differential voltage.
3. VOL is the single-ended low-output voltage.
4. VOH is the single-ended high-output voltage.
(I XILINX, efau‘t ll 1UGS71 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 15
Table 14: Complementary Differential SelectIO DC Input and Output Levels for HP I/O Banks(1)
I/O Standard VICM (V)(2) VID (V)(3) VOL (V)(4) VOH (V)(5) IOL IOH
Min Typ Max Min Max Max Min mA mA
DIFF_HSTL_I 0.680 VCCO/2 (VCCO/2) + 0.150 0.100 0.400 VCCO – 0.400 5.8 –5.8
DIFF_HSTL_I_12 0.400 x VCCO VCCO/2 0.600 x VCCO 0.100 0.250 x VCCO 0.750 x VCCO 4.1 –4.1
DIFF_HSTL_I_18 (VCCO/2) – 0.175 VCCO/2 (VCCO/2) + 0.175 0.100 0.400 VCCO – 0.400 6.2 –6.2
DIFF_HSUL_12 (VCCO/2) – 0.120 VCCO/2 (VCCO/2) + 0.120 0.100 20% VCCO 80% VCCO 0.1 –0.1
DIFF_SSTL12 (VCCO/2) – 0.150 VCCO/2 (VCCO/2) + 0.150 0.100 (VCCO/2) – 0.150 (VCCO/2) + 0.150 8.0 –8.0
DIFF_SSTL135 (VCCO/2) – 0.150 VCCO/2 (VCCO/2) + 0.150 0.100 (VCCO/2) – 0.150 (VCCO/2) + 0.150 9.0 –9.0
DIFF_SSTL15 (VCCO/2) – 0.175 VCCO/2 (VCCO/2) + 0.175 0.100 (VCCO/2) – 0.175 (VCCO/2) + 0.175 10.0 –10.0
DIFF_SSTL18_I (VCCO/2) – 0.175 VCCO/2 (VCCO/2) + 0.175 0.100 (VCCO/2) – 0.470 (VCCO/2) + 0.470 7.0 –7.0
Notes:
1. DIFF_POD10 and DIFF_POD12 HP I/O bank specifications are shown in Table 15, Table 16, and Table 17.
2. VICM is the input common mode voltage.
3. VID is the input differential voltage.
4. VOL is the single-ended low-output voltage.
5. VOH is the single-ended high-output voltage.
Table 15: DC Input Levels for Differential POD10 and POD12 I/O Standards(1)(2)
I/O Standard VICM (V) VID (V)
Min Typ Max Min Max
DIFF_POD10 0.63 0.70 0.77 0.14
DIFF_POD12 0.76 0.84 0.92 0.16
Notes:
1. Tested according to relevant specifications.
2. Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture
SelectIO Resources User Guide (UG571).
Table 16: DC Output Levels for Single-ended and Differential POD10 and POD12 Standards(1)(2)
Symbol Description VOUT Min Typ Max Units
ROL Pull-down resistance VOM_DC (as described in Table 17) 364044
ROH Pull-up resistance VOM_DC (as described in Table 17) 364044
Notes:
1. Tested according to relevant specifications.
2. Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture
SelectIO Resources User Guide (UG571).
Table 17: Table 16 Definitions for DC Output Levels for POD Standards
Symbol Description All Devices Units
VOM_DC DC output Mid measurement level (for IV curve linearity) 0.8 x VCCO V
(I XILINX, 5 stand UGS71 (g (Q Dwffergntial Q Q and 5 and 6 (Q Dwffergntwal (Q Q Q Q DS Stan UGS71 (0 Differential (Q Q), Q Q and 6 0‘ (5 Differential (Q Q), Q Q Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 16
LVDS DC Specifications (LVDS_25)
The LVDS_25 standard is available in the HR I/O banks. See the UltraScale Architecture SelectIO Resources
User Guide (UG571) for more information.
LVDS DC Specifications (LVDS)
The LVDS standard is available in the HP I/O banks. See the UltraScale Architecture SelectIO Resources User
Guide (UG571) for more information.
Table 18: LVDS_25 DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply voltage 2.375 2.500 2.625 V
VODIFF(1) Differential Output Voltage:
(QQ), Q = High
(Q –Q), Q=High RT=100 across Q and Q signals 247 350 600 mV
VOCM(1) Output Common-Mode Voltage RT=100 across Q and Q signals 1.000 1.250 1.485 V
VIDIFF
Differential Input Voltage:
(QQ), Q = High
(Q –Q), Q=High 100 350 600(2) mV
VICM_DC(3) Input Common-Mode Voltage (DC Coupling) 0.300 1.200 1.500 V
VICM_AC(4) Input Common-Mode Voltage (AC Coupling) 0.600 1.100 V
Notes:
1. VOCM and VODIFF values are for LVDS_PRE_EMPHASIS = FALSE.
2. Maximum VIDIFF value is specified for the maximum VICM specification. With a lower VICM, a higher VDIFF is tolerated only
when the recommended operating conditions and overshoot/undershoot VIN specifications are maintained.
3. Input common mode voltage for DC coupled configurations. EQUALIZATION = EQ_NONE (Default).
4. External input common mode voltage specification for AC coupled configurations. EQUALIZATION = EQ_LEVEL0,
EQ_LEVEL1, EQ_LEVEL2, EQ_LEVEL3, EQ_LEVEL4.
Table 19: LVDS DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
VCCO Supply voltage 1.710 1.800 1.890 V
VODIFF(1) Differential Output Voltage
(QQ), Q = High
(Q –Q), Q=High RT=100 across Q and Q signals 247 350 600 mV
VOCM(1) Output Common-Mode Voltage RT=100 across Q and Q signals 1.000 1.250 1.425 V
VIDIFF
Differential Input Voltage
(QQ), Q = High
(Q –Q), Q=High 100 350 600(2) mV
VICM_DC(3) Input Common-Mode Voltage (DC Coupling) 0.300 1.200 1.425 V
VICM_AC(4) Input Common-Mode Voltage (AC Coupling) 0.600 1.100 V
Notes:
1. VOCM and VODIFF values are for LVDS_PRE_EMPHASIS = FALSE.
2. Maximum VIDIFF value is specified for the maximum VICM specification. With a lower VICM, a higher VDIFF is tolerated only
when the recommended operating conditions and overshoot/undershoot VIN specifications are maintained.
3. Input common mode voltage for DC coupled configurations. EQUALIZATION = EQ_NONE (Default).
4. External input common mode voltage specification for AC coupled configurations. EQUALIZATION = EQ_LEVEL0,
EQ_LEVEL1, EQ_LEVEL2, EQ_LEVEL3, EQ_LEVEL4.
(I XILINX Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 17
AC Switching Characteristics
All values represented in this data sheet are based on the speed specifications in the Vivado® Design
Suite as outlined in Table 20 .
Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance,
Preliminary, or Production. Each designation is defined as follows:
Advance Product Specification
These specifications are based on simulations only and are typically available soon after device design
specifications are frozen. Although speed grades with this designation are considered relatively stable and
conservative, some under-reporting might still occur.
Preliminary Product Specification
These specifications are based on complete ES (engineering sample) silicon characterization. Devices and
speed grades with this designation are intended to give a better indication of the expected performance
of production silicon. The probability of under-reporting delays is greatly reduced as compared to
Advance data.
Product Specification
These specifications are released once enough production silicon of a particular device family member has
been characterized to provide full correlation between specifications and devices over numerous
production lots. There is no under-reporting of delays, and customers receive formal notification of any
subsequent changes. Typically, the slowest speed grades transition to production before faster speed
grades.
Testing of AC Switching Characteristics
Internal timing parameters are derived from measuring internal test patterns. All AC switching
characteristics are representative of worst-case supply voltage and junction temperature conditions.
For more specific, more precise, and worst-case guaranteed data, use the values reported by the static
timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all
Kintex UltraScale FPGAs.
Table 20: Speed Specification Version By Device
2016.4 Device
1.23 XCKU025, XCKU035, XCKU040, XCKU060, XQKU040, XQKU060
1.24 XCKU085, XCKU095, XCKU115, XQKU095, XQKU115
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 18
Speed Grade Designations
Since individual family members are produced at different times, the migration from one category to
another depends completely on the status of the fabrication process for each device. Table 2 1 correlates
the current status of the Kintex UltraScale FPGAs on a per speed grade basis.
Table 21: Speed Grade Designations by Device
Device Speed Grade and VCCINT Operating Voltages
Advance Preliminary Production
XCKU025 -2 (0.95V) and -1 (0.95V)
XCKU035 -3 (1.0V), -2 (0.95V), -1 (0.95V), -1L (0.95V), and
-1L (0.90V)(1)
XCKU040 -3 (1.0V), -2 (0.95V), -1 (0.95V), -1L (0.95V), and
-1L (0.90V)(1)
XCKU060 -3 (1.0V), -2 (0.95V), -1 (0.95V), -1L (0.95V), and
-1L (0.90V)(1)
XCKU085 -3 (1.0V), -2 (0.95V), -1 (0.95V), -1L (0.95V), and
-1L (0.90V)(1)
XCKU095 -2 (0.95V) and -1 (0.95V)
XCKU115 -3 (1.0V), -2 (0.95V), -1 (0.95V), -1L (0.95V), and
-1L (0.90V)(1)
XQKU040 -2 (0.95V) and -1 (0.95V)
XQKU060 -2 (0.95V) and -1 (0.95V)
XQKU095 -2 (0.95V) and -1 (0.95V)
XQKU115 -2 (0.95V) and -1 (0.95V)
Notes:
1. The lowest power -1L devices, where VCCINT = 0.90V, are listed in the Vivado Design Suite as -1LV.
(I XILINX, AR68169 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 19
Production Silicon and Software Status
In some cases, a particular family member (and speed grade) is released to production before a speed
specification is released with the correct label (Advance, Preliminary, Production). Any labeling
discrepancies are corrected in subsequent speed specification releases.
Table 2 2 lists the production released Kintex UltraScale FPGAs, speed grade, and the minimum
corresponding supported speed specification version and Vivado software revisions. The Vivado software
and speed specifications listed are the minimum releases required for production. All subsequent releases
of software and speed specifications are valid.
Table 22: Kintex UltraScale FPGAs Production Software and Speed Specification Release(1)
Device
Speed Grade, Temperature Ranges, and VCCINT Operating Voltages
1.0V 0.95V 0.90V
-3E -2E, -2I -1C, -1I -1M -1LI -1LI(3)
XCKU025(2) N/A Vivado Tools 2015.3 v1.23 N/A N/A N/A
XCKU035(2)
Vivado Tools 2015.2.1
v1.23 for FBVA676 and
FFVA1156 packages
Vivado Tools 2015.1 v1.23 for
FBVA676 and FFVA1156 packages N/A Vivado Tools 2015.3 v1.23
Vivado Tools 2015.3 v1.23 for FBVA900 N/A
Vivado Tools 2015.4 v1.23 for SFVA784 N/A Vivado Tools 2015.4 v1.23 for
SFVA784
XCKU040(2)
Vivado Tools 2015.2.1
v1.23 for FBVA676 and
FFVA1156 packages
Vivado Tools 2015.1 v1.23 for
FBVA676 and FFVA1156 packages N/A Vivado Tools 2015.3 v1.23
Vivado Tools 2015.3 v1.23 for FBVA900 N/A
Vivado Tools 2015.4 v1.23 for SFVA784 N/A Vivado Tools 2015.4 v1.23 for
SFVA784
XCKU060(2) Vivado Tools 2015.4 v1.23 Vivado Tools 2015.2 v1.23 N/A Vivado Tools
2015.3 v1.23 Vivado Tools
2015.4 v1.23
XCKU085(2) Vivado Tools 2015.4 v1.24 Vivado Tools 2015.3 v1.24 N/A Vivado Tools 2016.1 v1.24
XCKU095 N/A Vivado Tools 2015.3 v1.24 N/A N/A N/A
XCKU115(2) Vivado Tools 2015.4 v1.24 Vivado Tools 2015.2.1 v1.24 N/A Vivado Tools 2016.1 v1.24
XQKU040 N/A Vivado Tools 2016.4 v1.23 N/A N/A
XQKU060 N/A Vivado Tools 2016.4 v1.23 N/A N/A
XQKU095 N/A Vivado Tools 2016.4 v1.24 N/A N/A
XQKU115 N/A Vivado Tools 2016.4 v1.24 N/A N/A N/A
Notes:
1. For designs developed using Vivado tools prior to 2016.4, see the design advisory answer record AR68169: Design
Advisory for Kintex UltraScale FPGAs and Virtex UltraScale FPGAs—New minimum production speed specification version
(Speed File) required for all designs.
2. Designs with these devices that use the dedicated System Monitor I2C (I2C_SCL and I2C_SDA) or PCIe reset (PERSTN0
or PERSTN1) I/O where the bank 65 VCCO = 3.3V must use Vivado Design Suite 2015.4 or later.
3. The lowest power -1L devices, where VCCINT = 0.90V, are listed in the Vivado Design Suite as -1LV.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 20
Performance Characteristics
This section provides the performance characteristics of some common functions and designs
implemented in Kintex UltraScale FPGAs. These values are subject to the same guidelines as the AC
Switching Characteristics, page 17. In each table, the I/O bank type is either high performance (HP) or high
range (HR).
In LVDS component mode:
For the input/output registers, the Vivado tools limit clock frequencies to 364.9 MHz for -3 and -2
speed grades or 316.4 MHz for -1 speed grade.
For IDDR, Vivado tools limit clock frequencies to 729.9 MHz for -3 and -2 speed grades or 632.9 MHz
for -1 speed grade.
For ODDR, Vivado tools limit clock frequencies to 730.4 MHz for all speed grades.
Table 23: LVDS Component Mode Performance
Description I/O
Bank
Type
Speed Grade and VCCINT Operating Voltages
Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
Min Max Min Max Min Max Min Max
LVDS TX DDR (OSERDES 4:1, 8:1) HP 0 1250 0 1250 0 1250 0 1250 Mb/s
HR 0 1250 0 1250 0 1000 0 1000 Mb/s
LVDS TX SDR (OSERDES 2:1, 4:1) HP 0625062506250625Mb/s
HR 0625062505000500Mb/s
LVDS RX DDR (ISERDES 1:4, 1:8)(1) HP 0 1250 0 1250 0 1250 0 1250 Mb/s
HR 0 1250 0 1250 0 1000 0 1000 Mb/s
LVDS RX SDR (ISERDES 1:2, 1:4)(1) HP 0625062506250625Mb/s
HR 0625062505000500Mb/s
Notes:
1. LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) or
phase-tracking algorithms are used to achieve maximum performance.
Table 24: LVDS Native Mode Performance(1)
Description I/O
Bank
Type
Speed Grade and VCCINT Operating Voltages
Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
MinMaxMinMaxMinMaxMinMax
LVDS TX DDR (TX_BITSLICE 4:1, 8:1) HP 300 1600 300 1600 300 1400 300 1400 Mb/s
HR 300 1250 300 1250 300 1250 300 1250 Mb/s
LVDS TX SDR (TX_BITSLICE 2:1, 4:1) HP 150 800 150 800 150 700 150 700 Mb/s
HR 150 625 150 625 150 625 150 625 Mb/s
LVDS RX DDR (RX_BITSLICE 1:4,
1:8)(2) HP 300 1600(3) 300 1600(3) 300 1400(3) 300 1400(3) Mb/s
HR 300 1250 300 1250 300 1250 300 1250 Mb/s
(I XILINX, HighrSEeed Select‘O Interface Wizard Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 21
LVDS RX SDR (RX_BITSLICE 1:2,
1:4)(2) HP 150 800 150 800 150 700 150 700 Mb/s
HR 150 625 150 625 150 625 150 625 Mb/s
Notes:
1. Native mode is supported through the High-Speed SelectIO Interface Wizard available with the Vivado Design Suite.
2. LVDS receivers are typically bounded with certain applications where specific dynamic phase-alignment (DPA) or
phase-tracking algorithms are used to achieve maximum performance.
3. Asynchronous receiver performance is limited to 1300 Mb/s for -3 and -2 speed grades, and 1250 Mb/s for -1 and -1L
speed grades.
Table 25: LVDS Native-Mode 1000BASE-X Support(1)
Description I/O Bank Type
Speed Grade and VCCINT Operating Voltages
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
1000BASE-X HP Yes Yes Yes Yes
Notes:
1. 1000BASE-X support is based on the IEEE Standard for CSMA/CD Access Method and Physical Layer Specifications (IEEE
Std 802.3-2008).
Table 24: LVDS Native Mode Performance(1) (Cont’d)
Description I/O
Bank
Type
Speed Grade and VCCINT Operating Voltages
Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
MinMaxMinMaxMinMaxMinMax
(I XILINX, um data rates for ap Memory Interfaces ations. T emente UGSB3 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 22
Table 2 6 provides the maximum data rates for applicable memory standards using the Kintex UltraScale
FPGAs memory PHY. Refer to Memory Interfaces for the complete list of memory interface standards
supported and detailed specifications. The final performance of the memory interface is determined
through a complete design implemented in the Vivado Design Suite, following guidelines in the UltraScale
Architecture PCB Design Guide (UG583), electrical analysis, and characterization of the system.
Table 26: Maximum Physical Interface (PHY) Rate for Memory Interfaces by I/O and Package
Memory
Standard
I/O
Bank
Type Package DRAM Type
Speed Grade, Temperature Ranges,
and VCCINT Operating Voltages
Units
1.0V 0.95V 0.90V
-3E -2E -2I -1C/I
-1M
-1LI -1LI
DDR4 HP
All FF/RF packages
All FL/RL packages
FBVA900
Single rank
component 2400 2400 2400 2133 2133
Mb/s
1 rank DIMM(1)(2) 2133 2133 2133 1866 1866
2 rank DIMM(1)(3) 1866 1866 1866 1600 1600
4 rank DIMM(1)(4) 1333 1333 1333 N/A N/A
FBVA676
RBA676
SFVA784
Single rank
component 2133 2133 2133 1866 1866
1 rank DIMM(1)(2) 1866 1866 1866 1600 1600
2 rank DIMM(1)(3) 1600 1600 1600 1600 1600
DDR3 HP
All FF/RF packages
All FL/RL packages
FBVA676
RBA676
FBVA900
Single rank
component 2133 2133 2133 1866 1866
Mb/s
1 rank DIMM(1)(2) 1866 1866 1866 1600 1600
2 rank DIMM(1)(3) 1600 1600 1600 1333 1333
4 rank DIMM(1)(4) 1066 1066 1066 800 800
SFVA784
Single rank
component 1866 1866 1866 1600 1600
1 rank DIMM(1)(2) 1600 1600 1600 1600 1600
2 rank DIMM(1)(3) 1600 1600 1600 1333 1333
4 rank DIMM(1)(4) 1066 1066 1066 800 800
HR All Single rank
component 1333(5) 1066 1066
DDR3L HP
All FF/RF packages
All FL/RL packages
FBVA676
RBA676
FBVA900
Single rank
component 1866 1866 1866 1600 1600
Mb/s
1 rank DIMM(1)(2) 1600 1600 1600 1333 1333
2 rank DIMM(1)(3) 1333 1333 1333 1066 1066
4 rank DIMM(1)(4) 800 800 800 606 606
SFVA784
Single rank
component 1600 1600 1600 1600 1600
1 rank DIMM(1)(2) 1600 1600 1600 1333 1333
2 rank DIMM(1)(3) 1333 1333 1333 1066 1066
4 rank DIMM(1)(4) 800 800 800 606 606
HR All Single rank
component 1066 1066 1066 800 800
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 23
QDR II+(6) All All Single rank
component 633 600 600 550 550
MHz
QDRIV-XP HP All Single rank
component 800 800 800 667 667(7)
RLDRAM III HP
All FF/RF packages
All FL/RL packages
FBVA676
RBA676
FBVA900
Single rank
component 1066 1066 1066 933 933
SFVA784 933 933 933 800 800
LPDDR3 HP All Single rank
component 1600 1600 1600 1600 1600 Mb/s
HR All Single rank
component 1066 1066 1066 1066 1066
Notes:
1. Dual in-line memory module (DIMM) includes RDIMM, SODIMM, UDIMM, and LRDIMM.
2. Includes: 1 rank 1 slot, DDP 2 rank, LRDIMM 2 or 4 rank 1 slot.
3. Includes: 2 rank 1 slot, 1 rank 2 slot, LRDIMM 2 rank 2 slot.
4. Includes: 2 rank 2 slot, 4 rank 1 slot.
5. Memory device must be rated at 1600 or above.
6. The QDRII+ performance specifications are for burst-length 4 (BL = 4) implementations.
7. The supported temperature range for QDRIV-XP -1L is 0°C to 100°C
Table 26: Maximum Physical Interface (PHY) Rate for Memory Interfaces by I/O and Package
Memory
Standard
I/O
Bank
Type Package DRAM Type
Speed Grade, Temperature Ranges,
and VCCINT Operating Voltages
Units
1.0V 0.95V 0.90V
-3E -2E -2I -1C/I
-1M
-1LI -1LI
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 24
IOB Pad Input, Output, and 3-State
Table 2 7 (high-range IOB (HR)) and Ta b l e 28 (high-performance IOB (HP)) summarizes the values of
standard-specific data input delay adjustments, output delays terminating at pads (based on standard)
and 3-state delays.
TINBUF_DELAY_PAD_I is the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The
delay varies depending on the capability of the SelectIO input buffer.
TOUTBUF_DELAY_O_PAD is the delay from the O pin to the IOB pad through the output buffer of an IOB
pad. The delay varies depending on the capability of the SelectIO output buffer.
TOUTBUF_DELAY_TD_PAD is the delay from the T pin to the IOB pad through the output buffer of an IOB
pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output
buffer. In HP I/O banks, the internal DCI termination turn-on time is always faster than
TOUTBUF_DELAY_TD_PAD when the DCITERMDISABLE pin is used. In HR I/O banks, the on-die termination
turn-on time is always faster than TOUTBUF_DELAY_TD_PAD when the INTERMDISABLE pin is used.
Table 27: IOB High Range (HR) Switching Characteristics
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
BLVDS_25 0.46 0.58 0.64 0.64 0.64 1.37 1.37 1.62 1.62 1.62 1.39 1.40 1.66 1.66 1.66 ns
DIFF_HSTL_I_18_F 0.42 0.53 0.57 0.57 0.57 0.71 0.71 0.90 0.90 0.91 0.82 0.82 1.06 1.06 1.06 ns
DIFF_HSTL_I_18_S 0.42 0.53 0.57 0.57 0.57 0.83 0.83 1.02 1.02 1.03 0.93 0.94 1.16 1.16 1.16 ns
DIFF_HSTL_I_F 0.42 0.53 0.57 0.57 0.57 0.73 0.73 0.92 0.92 0.93 0.90 0.90 1.14 1.14 1.14 ns
DIFF_HSTL_I_S 0.42 0.53 0.57 0.57 0.57 0.77 0.77 0.96 0.96 0.96 0.95 0.98 1.23 1.23 1.23 ns
DIFF_HSTL_II_18_F 0.42 0.53 0.57 0.57 0.57 0.80 0.80 0.99 0.99 1.00 0.95 0.98 1.23 1.23 1.23 ns
DIFF_HSTL_II_18_S 0.42 0.53 0.57 0.57 0.57 0.83 0.83 1.03 1.03 1.03 1.01 1.03 1.28 1.28 1.28 ns
DIFF_HSTL_II_F 0.42 0.53 0.57 0.57 0.57 0.71 0.71 0.91 0.91 0.91 0.87 0.87 1.11 1.11 1.11 ns
DIFF_HSTL_II_S 0.42 0.53 0.57 0.57 0.57 0.80 0.80 0.99 0.99 0.99 0.95 0.96 1.20 1.20 1.20 ns
DIFF_HSUL_12_F 0.42 0.53 0.57 0.57 0.57 0.73 0.73 0.92 0.92 0.92 0.73 0.73 0.92 0.92 0.92 ns
DIFF_HSUL_12_S 0.42 0.53 0.57 0.57 0.57 0.82 0.82 1.01 1.01 1.02 0.82 0.82 1.01 1.01 1.02 ns
DIFF_SSTL12_F 0.42 0.53 0.57 0.57 0.57 0.70 0.70 0.89 0.89 0.89 0.81 0.81 1.02 1.02 1.02 ns
DIFF_SSTL12_S 0.42 0.53 0.57 0.57 0.57 1.04 1.04 1.26 1.26 1.26 1.04 1.04 1.26 1.26 1.26 ns
DIFF_SSTL135_F 0.42 0.53 0.57 0.57 0.57 0.70 0.70 0.88 0.88 0.88 0.86 0.87 1.09 1.09 1.09 ns
DIFF_SSTL135_S 0.42 0.53 0.57 0.57 0.57 0.77 0.77 0.96 0.96 0.96 0.93 0.94 1.18 1.18 1.18 ns
DIFF_SSTL135_R_F 0.42 0.53 0.57 0.57 0.57 0.72 0.72 0.91 0.91 0.91 0.83 0.84 1.06 1.06 1.06 ns
DIFF_SSTL135_R_S 0.42 0.53 0.57 0.57 0.57 0.80 0.80 1.00 1.00 1.00 0.93 0.93 1.17 1.17 1.17 ns
DIFF_SSTL15_F 0.42 0.53 0.57 0.57 0.57 0.66 0.66 0.85 0.85 0.85 0.81 0.82 1.05 1.05 1.05 ns
DIFF_SSTL15_S 0.42 0.53 0.57 0.57 0.57 0.78 0.78 0.98 0.98 0.98 0.96 0.96 1.20 1.20 1.21 ns
DIFF_SSTL15_R_F 0.42 0.53 0.57 0.57 0.57 0.73 0.73 0.92 0.92 0.92 0.86 0.86 1.09 1.09 1.09 ns
DIFF_SSTL15_R_S 0.42 0.53 0.57 0.57 0.57 0.81 0.81 1.01 1.01 1.02 0.93 0.94 1.18 1.18 1.18 ns
DIFF_SSTL18_I_F 0.42 0.53 0.57 0.57 0.57 0.74 0.74 0.94 0.94 0.94 0.92 0.93 1.18 1.18 1.19 ns
DIFF_SSTL18_I_S 0.42 0.53 0.57 0.57 0.57 0.86 0.86 1.05 1.05 1.06 0.86 0.86 1.05 1.05 1.06 ns
DIFF_SSTL18_II_F 0.42 0.53 0.57 0.57 0.57 0.71 0.71 0.90 0.90 0.90 0.87 0.88 1.11 1.11 1.12 ns
DIFF_SSTL18_II_S 0.42 0.53 0.57 0.57 0.57 0.83 0.83 1.03 1.03 1.03 0.99 1.04 1.29 1.29 1.30 ns
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 25
HSTL_I_18_F 0.52 0.55 0.59 0.59 0.59 0.73 0.73 0.93 0.93 0.93 0.84 0.84 1.08 1.08 1.08 ns
HSTL_I_18_S 0.52 0.55 0.59 0.59 0.59 0.85 0.85 1.05 1.05 1.05 0.95 0.96 1.18 1.18 1.18 ns
HSTL_I_F 0.52 0.55 0.59 0.59 0.59 0.75 0.75 0.94 0.94 0.95 0.92 0.92 1.16 1.16 1.17 ns
HSTL_I_S 0.52 0.55 0.59 0.59 0.59 0.79 0.79 0.98 0.98 0.99 0.97 1.00 1.25 1.25 1.25 ns
HSTL_II_18_F 0.52 0.55 0.59 0.59 0.59 0.82 0.82 1.01 1.01 1.02 0.97 1.00 1.25 1.25 1.25 ns
HSTL_II_18_S 0.52 0.55 0.59 0.59 0.59 0.85 0.85 1.05 1.05 1.05 1.03 1.05 1.30 1.30 1.30 ns
HSTL_II_F 0.52 0.55 0.59 0.59 0.59 0.73 0.73 0.93 0.93 0.93 0.89 0.90 1.13 1.13 1.13 ns
HSTL_II_S 0.52 0.55 0.59 0.59 0.59 0.82 0.82 1.01 1.01 1.02 0.98 0.98 1.22 1.22 1.22 ns
HSUL_12_F 0.52 0.55 0.59 0.59 0.59 0.75 0.75 0.94 0.94 0.95 0.75 0.75 0.94 0.94 0.95 ns
HSUL_12_S 0.52 0.55 0.59 0.59 0.59 0.84 0.84 1.04 1.04 1.04 0.96 0.97 1.15 1.15 1.15 ns
LVCMOS12_F_12 0.76 0.95 0.95 0.95 0.95 0.95 0.95 1.16 1.16 1.16 0.95 0.95 1.16 1.16 1.16 ns
LVCMOS12_F_4 0.76 0.95 0.95 0.95 0.95 1.13 1.16 1.39 1.39 1.39 1.13 1.16 1.39 1.39 1.39 ns
LVCMOS12_F_8 0.76 0.95 0.95 0.95 0.95 0.97 0.97 1.19 1.19 1.19 0.97 0.97 1.19 1.19 1.19 ns
LVCMOS12_S_12 0.76 0.95 0.95 0.95 0.95 1.06 1.06 1.28 1.28 1.28 1.06 1.06 1.28 1.28 1.28 ns
LVCMOS12_S_4 0.76 0.95 0.95 0.95 0.95 1.27 1.36 1.60 1.60 1.60 1.27 1.36 1.60 1.60 1.60 ns
LVCMOS12_S_8 0.76 0.95 0.95 0.95 0.95 1.10 1.10 1.32 1.32 1.32 1.10 1.10 1.32 1.32 1.32 ns
LVCMOS15_F_12 0.68 0.82 0.87 0.87 0.88 0.96 0.96 1.18 1.18 1.18 0.96 0.96 1.18 1.18 1.18 ns
LVCMOS15_F_16 0.68 0.82 0.87 0.87 0.88 0.94 0.94 1.15 1.15 1.15 0.94 0.94 1.17 1.17 1.17 ns
LVCMOS15_F_4 0.68 0.82 0.87 0.87 0.88 1.15 1.15 1.38 1.38 1.39 1.15 1.15 1.38 1.38 1.39 ns
LVCMOS15_F_8 0.68 0.82 0.87 0.87 0.88 1.02 1.02 1.24 1.24 1.24 1.02 1.02 1.24 1.24 1.24 ns
LVCMOS15_S_12 0.68 0.82 0.87 0.87 0.88 1.07 1.07 1.29 1.29 1.30 1.07 1.07 1.29 1.29 1.30 ns
LVCMOS15_S_16 0.68 0.82 0.87 0.87 0.88 1.04 1.04 1.26 1.26 1.27 1.04 1.04 1.26 1.26 1.27 ns
LVCMOS15_S_4 0.68 0.82 0.87 0.87 0.88 1.28 1.29 1.53 1.53 1.54 1.28 1.29 1.53 1.53 1.54 ns
LVCMOS15_S_8 0.68 0.82 0.87 0.87 0.88 1.11 1.11 1.34 1.34 1.34 1.11 1.11 1.34 1.34 1.34 ns
LVCMOS18_F_12 0.64 0.76 0.79 0.79 0.80 1.04 1.04 1.25 1.25 1.26 1.04 1.04 1.25 1.25 1.26 ns
LVCMOS18_F_16 0.64 0.76 0.79 0.79 0.80 1.00 1.00 1.21 1.21 1.22 1.00 1.00 1.21 1.21 1.22 ns
LVCMOS18_F_4 0.64 0.76 0.79 0.79 0.80 1.17 1.17 1.41 1.41 1.41 1.17 1.17 1.41 1.41 1.41 ns
LVCMOS18_F_8 0.64 0.76 0.79 0.79 0.80 1.10 1.10 1.33 1.33 1.33 1.10 1.10 1.33 1.33 1.33 ns
LVCMOS18_S_12 0.64 0.76 0.79 0.79 0.80 1.11 1.11 1.34 1.34 1.35 1.11 1.11 1.34 1.34 1.35 ns
LVCMOS18_S_16 0.64 0.76 0.79 0.79 0.80 1.11 1.11 1.34 1.34 1.34 1.11 1.11 1.34 1.34 1.34 ns
LVCMOS18_S_4 0.64 0.76 0.79 0.79 0.80 1.32 1.32 1.58 1.58 1.58 1.32 1.32 1.58 1.58 1.58 ns
LVCMOS18_S_8 0.64 0.76 0.79 0.79 0.80 1.18 1.18 1.38 1.38 1.38 1.18 1.18 1.38 1.38 1.38 ns
LVCMOS25_F_12 0.83 0.85 0.90 0.90 0.91 1.54 1.54 1.81 1.81 1.81 1.54 1.54 1.81 1.81 1.81 ns
LVCMOS25_F_16 0.83 0.85 0.90 0.90 0.91 1.56 1.59 1.88 1.88 1.88 1.56 1.59 1.88 1.88 1.88 ns
LVCMOS25_F_4 0.83 0.85 0.90 0.90 0.91 2.24 2.24 2.56 2.56 2.56 2.24 2.24 2.56 2.56 2.56 ns
LVCMOS25_F_8 0.83 0.85 0.90 0.90 0.91 1.67 1.67 1.95 1.95 1.95 1.67 1.67 1.95 1.95 1.95 ns
LVCMOS25_S_12 0.83 0.85 0.90 0.90 0.91 2.05 2.14 2.47 2.47 2.47 2.05 2.14 2.47 2.47 2.47 ns
LVCMOS25_S_16 0.83 0.85 0.90 0.90 0.91 1.84 1.89 2.19 2.19 2.19 1.84 1.89 2.19 2.19 2.19 ns
LVCMOS25_S_4 0.83 0.85 0.90 0.90 0.91 3.23 3.27 3.68 3.68 3.68 3.23 3.27 3.68 3.68 3.68 ns
LVCMOS25_S_8 0.83 0.85 0.90 0.90 0.91 2.11 2.15 2.47 2.47 2.47 2.11 2.15 2.47 2.47 2.47 ns
Table 27: IOB High Range (HR) Switching Characteristics (Cont’d)
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 26
LVCMOS33_F_12 0.96 0.97 1.03 1.03 1.03 1.98 1.98 2.24 2.24 2.24 1.98 1.98 2.24 2.24 2.24 ns
LVCMOS33_F_16 0.96 0.97 1.03 1.03 1.03 1.79 1.79 2.09 2.09 2.09 1.79 1.79 2.09 2.09 2.09 ns
LVCMOS33_F_4 0.96 0.97 1.03 1.03 1.03 2.34 2.34 2.63 2.63 2.63 2.34 2.34 2.63 2.63 2.63 ns
LVCMOS33_F_8 0.96 0.97 1.03 1.03 1.03 2.05 2.05 2.32 2.32 2.33 2.05 2.05 2.32 2.32 2.33 ns
LVCMOS33_S_12 0.96 0.97 1.03 1.03 1.03 2.13 2.13 2.48 2.48 2.48 2.13 2.13 2.48 2.48 2.48 ns
LVCMOS33_S_16 0.96 0.97 1.03 1.03 1.03 2.11 2.11 2.43 2.43 2.43 2.11 2.11 2.43 2.43 2.43 ns
LVCMOS33_S_4 0.96 0.97 1.03 1.03 1.03 3.23 3.23 3.67 3.67 3.67 3.23 3.23 3.67 3.67 3.67 ns
LVCMOS33_S_8 0.96 0.97 1.03 1.03 1.03 2.28 2.28 2.55 2.55 2.55 2.66 2.67 2.78 2.78 2.78 ns
LVDS_25 0.45 0.58 0.62 0.62 0.63 0.80 0.83 0.95 0.96 0.95
105.74 105.74 105.85 105.85 105.85
ns
LVPECL 0.43 0.57 0.62 0.62 0.63 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A ns
LVTTL_F_12 1.04 1.04 1.05 1.05 1.06 1.83 1.83 2.10 2.10 2.10 1.83 1.83 2.10 2.10 2.10 ns
LVTTL_F_16 1.04 1.04 1.05 1.05 1.06 1.79 1.79 2.06 2.06 2.06 1.79 1.79 2.06 2.06 2.06 ns
LVTTL_F_4 1.04 1.04 1.05 1.05 1.06 2.34 2.34 2.63 2.63 2.63 2.34 2.34 2.63 2.63 2.63 ns
LVTTL_F_8 1.04 1.04 1.05 1.05 1.06 1.97 1.97 2.22 2.22 2.23 1.97 1.97 2.22 2.22 2.23 ns
LVTTL_S_12 1.04 1.04 1.05 1.05 1.06 1.90 1.90 2.19 2.19 2.19 1.96 1.97 2.19 2.19 2.19 ns
LVTTL_S_16 1.04 1.04 1.05 1.05 1.06 2.07 2.07 2.40 2.40 2.40 2.07 2.07 2.40 2.40 2.40 ns
LVTTL_S_4 1.04 1.04 1.05 1.05 1.06 3.23 3.23 3.67 3.67 3.67 3.23 3.23 3.67 3.67 3.67 ns
LVTTL_S_8 1.04 1.04 1.05 1.05 1.06 2.22 2.22 2.47 2.47 2.47 2.22 2.37 2.50 2.50 2.51 ns
MINI_LVDS_25 0.45 0.58 0.62 0.62 0.63 0.80 0.83 0.95 0.96 0.95
105.74 105.74 105.85 105.85 105.85
ns
PPDS_25 0.45 0.58 0.62 0.62 0.63 0.80 0.83 0.95 0.96 0.95
105.74 105.74 105.85 105.85 105.85
ns
RSDS_25 0.45 0.58 0.62 0.62 0.63 0.80 0.83 0.95 0.96 0.95
105.74 105.74 105.85 105.85 105.85
ns
SLVS_400_25 0.45 0.58 0.62 0.62 0.63 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A ns
SSTL12_F 0.52 0.55 0.59 0.59 0.59 0.72 0.72 0.91 0.91 0.91 0.83 0.83 1.04 1.04 1.04 ns
SSTL12_S 0.52 0.55 0.59 0.59 0.59 0.78 0.78 0.97 0.97 0.98 0.88 0.88 1.11 1.11 1.11 ns
SSTL135_F 0.52 0.55 0.59 0.59 0.59 0.72 0.72 0.90 0.90 0.91 0.88 0.89 1.11 1.11 1.11 ns
SSTL135_S 0.52 0.55 0.59 0.59 0.59 0.77 0.77 0.97 0.97 0.97 0.94 0.94 1.18 1.18 1.18 ns
SSTL135_R_F 0.52 0.55 0.59 0.59 0.59 0.74 0.74 0.93 0.93 0.93 0.85 0.86 1.08 1.08 1.08 ns
SSTL135_R_S 0.52 0.55 0.59 0.59 0.59 0.82 0.82 1.02 1.02 1.03 0.95 0.96 1.19 1.19 1.19 ns
SSTL15_F 0.52 0.55 0.59 0.59 0.59 0.68 0.68 0.87 0.87 0.87 0.83 0.84 1.07 1.07 1.07 ns
SSTL15_S 0.52 0.55 0.59 0.59 0.59 0.80 0.80 1.00 1.00 1.01 0.98 0.99 1.23 1.23 1.23 ns
SSTL15_R_F 0.52 0.55 0.59 0.59 0.59 0.75 0.75 0.94 0.94 0.94 0.88 0.89 1.11 1.11 1.11 ns
SSTL15_R_S 0.52 0.55 0.59 0.59 0.59 0.83 0.83 1.04 1.04 1.04 0.95 0.96 1.20 1.20 1.21 ns
SSTL18_I_F 0.52 0.55 0.59 0.59 0.59 0.76 0.76 0.96 0.96 0.96 0.94 0.95 1.21 1.21 1.21 ns
SSTL18_I_S 0.52 0.55 0.59 0.59 0.59 0.88 0.88 1.08 1.08 1.08 0.88 0.88 1.08 1.08 1.08 ns
SSTL18_II_F 0.52 0.55 0.59 0.59 0.59 0.73 0.73 0.92 0.92 0.92 0.89 0.90 1.14 1.14 1.14 ns
SSTL18_II_S 0.52 0.55 0.59 0.59 0.59 0.85 0.85 1.05 1.05 1.05 1.01 1.06 1.32 1.32 1.32 ns
SUB_LVDS 0.45 0.58 0.62 0.62 0.63 0.80 0.83 0.95 0.96 0.95
105.74 105.74 105.85 105.85 105.85
ns
TMDS_33 0.57 0.65 0.73 0.73 0.74 0.80 0.83 0.95 0.96 0.95
105.74 105.74 105.85 105.85 105.85
ns
Table 27: IOB High Range (HR) Switching Characteristics (Cont’d)
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 27
Table 28: IOB High Performance (HP) Switching Characteristics
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
DIFF_HSTL_I_12_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.54 0.54 0.54 0.54 0.62 0.68 0.68 0.68 ns
DIFF_HSTL_I_12_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.60 0.60 0.60 0.60 0.68 0.76 0.76 0.76 ns
DIFF_HSTL_I_12_S 0.43 0.48 0.55 0.55 0.55 0.56 0.61 0.67 0.67 0.67 0.67 0.76 0.85 0.85 0.85 ns
DIFF_HSTL_I_18_F 0.43 0.48 0.55 0.55 0.55 0.45 0.49 0.53 0.53 0.53 0.53 0.61 0.68 0.68 0.68 ns
DIFF_HSTL_I_18_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.59 0.59 0.59 0.59 0.68 0.76 0.76 0.76 ns
DIFF_HSTL_I_18_S 0.43 0.48 0.55 0.55 0.55 0.56 0.62 0.67 0.67 0.67 0.67 0.77 0.86 0.86 0.86 ns
DIFF_HSTL_I_DCI_12_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.54 0.54 0.54 0.54 0.62 0.68 0.68 0.68 ns
DIFF_HSTL_I_DCI_12_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.60 0.60 0.60 0.60 0.68 0.76 0.76 0.76 ns
DIFF_HSTL_I_DCI_12_S 0.43 0.48 0.55 0.55 0.55 0.56 0.61 0.67 0.67 0.67 0.67 0.76 0.85 0.85 0.85 ns
DIFF_HSTL_I_DCI_18_F 0.43 0.48 0.55 0.55 0.55 0.45 0.49 0.53 0.53 0.53 0.53 0.61 0.68 0.68 0.68 ns
DIFF_HSTL_I_DCI_18_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.59 0.59 0.59 0.59 0.68 0.76 0.76 0.76 ns
DIFF_HSTL_I_DCI_18_S 0.43 0.48 0.55 0.55 0.55 0.56 0.62 0.67 0.67 0.67 0.67 0.77 0.86 0.86 0.86 ns
DIFF_HSTL_I_DCI_F 0.430.480.550.550.550.460.500.540.540.540.540.620.680.680.68 ns
DIFF_HSTL_I_DCI_M 0.430.480.550.550.550.500.550.600.600.600.600.680.760.760.76 ns
DIFF_HSTL_I_DCI_S 0.430.480.550.550.550.560.610.670.670.670.670.760.850.850.85 ns
DIFF_HSTL_I_F 0.430.480.550.550.550.460.500.540.540.540.540.620.680.680.68 ns
DIFF_HSTL_I_M 0.430.480.550.550.550.500.550.600.600.600.600.680.760.760.76 ns
DIFF_HSTL_I_S 0.430.480.550.550.550.560.610.670.670.670.670.760.850.850.85 ns
DIFF_HSUL_12_DCI_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.54 0.54 0.54 0.54 0.62 0.68 0.68 0.68 ns
DIFF_HSUL_12_DCI_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.60 0.60 0.60 0.60 0.68 0.76 0.76 0.76 ns
DIFF_HSUL_12_DCI_S 0.43 0.48 0.55 0.55 0.55 0.56 0.61 0.67 0.67 0.67 0.67 0.76 0.85 0.85 0.85 ns
DIFF_HSUL_12_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.54 0.54 0.54 0.54 0.62 0.68 0.68 0.68 ns
DIFF_HSUL_12_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.60 0.60 0.60 0.60 0.68 0.76 0.76 0.76 ns
DIFF_HSUL_12_S 0.43 0.48 0.55 0.55 0.55 0.56 0.61 0.67 0.67 0.67 0.67 0.76 0.85 0.85 0.85 ns
DIFF_POD10_DCI_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.55 0.55 0.55 0.58 0.65 0.73 0.73 0.73 ns
DIFF_POD10_DCI_M 0.43 0.48 0.55 0.55 0.55 0.52 0.58 0.63 0.63 0.63 0.62 0.71 0.79 0.79 0.79 ns
DIFF_POD10_DCI_S 0.43 0.48 0.55 0.55 0.55 0.61 0.68 0.74 0.74 0.74 0.69 0.79 0.88 0.88 0.88 ns
DIFF_POD10_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.55 0.55 0.55 0.58 0.65 0.73 0.73 0.73 ns
DIFF_POD10_M 0.43 0.48 0.55 0.55 0.55 0.52 0.58 0.63 0.63 0.63 0.62 0.71 0.79 0.79 0.79 ns
DIFF_POD10_S 0.43 0.48 0.55 0.55 0.55 0.61 0.68 0.74 0.74 0.74 0.69 0.79 0.88 0.88 0.88 ns
DIFF_POD12_DCI_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.55 0.55 0.55 0.58 0.65 0.73 0.73 0.73 ns
DIFF_POD12_DCI_M 0.43 0.48 0.55 0.55 0.55 0.52 0.58 0.63 0.63 0.63 0.62 0.71 0.79 0.79 0.79 ns
DIFF_POD12_DCI_S 0.43 0.48 0.55 0.55 0.55 0.61 0.68 0.74 0.74 0.74 0.69 0.79 0.88 0.88 0.88 ns
DIFF_POD12_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.55 0.55 0.55 0.58 0.65 0.73 0.73 0.73 ns
DIFF_POD12_M 0.43 0.48 0.55 0.55 0.55 0.52 0.58 0.63 0.63 0.63 0.62 0.71 0.79 0.79 0.79 ns
DIFF_POD12_S 0.43 0.48 0.55 0.55 0.55 0.61 0.68 0.74 0.74 0.74 0.69 0.79 0.88 0.88 0.88 ns
DIFF_SSTL12_DCI_F 0.430.480.550.550.550.460.500.540.540.540.540.620.680.680.68 ns
DIFF_SSTL12_DCI_M 0.430.480.550.550.550.500.550.600.600.600.600.680.760.760.76 ns
DIFF_SSTL12_DCI_S 0.430.480.550.550.550.560.610.670.670.670.670.760.850.850.85 ns
DIFF_SSTL12_F 0.430.480.550.550.550.460.500.540.540.540.540.620.680.680.68 ns
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 28
DIFF_SSTL12_M 0.430.480.550.550.550.500.550.600.600.600.600.680.760.760.76 ns
DIFF_SSTL12_S 0.430.480.550.550.550.560.610.670.670.670.670.760.850.850.85 ns
DIFF_SSTL135_DCI_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.54 0.54 0.54 0.54 0.62 0.69 0.69 0.69 ns
DIFF_SSTL135_DCI_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.60 0.60 0.60 0.60 0.68 0.76 0.76 0.76 ns
DIFF_SSTL135_DCI_S 0.43 0.48 0.55 0.55 0.55 0.56 0.61 0.67 0.67 0.67 0.67 0.76 0.85 0.85 0.85 ns
DIFF_SSTL135_F 0.43 0.48 0.55 0.55 0.55 0.46 0.50 0.54 0.54 0.54 0.54 0.62 0.69 0.69 0.69 ns
DIFF_SSTL135_M 0.43 0.48 0.55 0.55 0.55 0.50 0.55 0.60 0.60 0.60 0.60 0.68 0.76 0.76 0.76 ns
DIFF_SSTL135_S 0.43 0.48 0.55 0.55 0.55 0.56 0.61 0.67 0.67 0.67 0.67 0.76 0.85 0.85 0.85 ns
DIFF_SSTL15_DCI_F 0.430.480.550.550.550.460.500.540.540.540.540.620.680.680.68 ns
DIFF_SSTL15_DCI_M 0.430.480.550.550.550.500.550.600.600.600.600.680.760.760.76 ns
DIFF_SSTL15_DCI_S 0.430.480.550.550.550.560.610.670.670.670.670.760.850.850.85 ns
DIFF_SSTL15_F 0.430.480.550.550.550.460.500.540.540.540.540.620.680.680.68 ns
DIFF_SSTL15_M 0.430.480.550.550.550.500.550.600.600.600.600.680.760.760.76 ns
DIFF_SSTL15_S 0.430.480.550.550.550.560.610.670.670.670.670.760.850.850.85 ns
DIFF_SSTL18_I_DCI_F 0.430.480.550.550.550.450.490.530.530.530.530.610.680.680.68 ns
DIFF_SSTL18_I_DCI_M 0.430.480.550.550.550.500.550.590.590.590.590.680.760.760.76 ns
DIFF_SSTL18_I_DCI_S 0.430.480.550.550.550.560.620.670.670.670.670.770.860.860.86 ns
DIFF_SSTL18_I_F 0.430.480.550.550.550.450.490.530.530.530.530.610.680.680.68 ns
DIFF_SSTL18_I_M 0.430.480.550.550.550.500.550.590.590.590.590.680.760.760.76 ns
DIFF_SSTL18_I_S 0.430.480.550.550.550.560.620.670.670.670.670.770.860.860.86 ns
HSLVDCI_15_F 0.43 0.46 0.52 0.52 0.52 0.48 0.53 0.56 0.56 0.56 0.57 0.64 0.71 0.71 0.71 ns
HSLVDCI_15_M 0.43 0.46 0.52 0.52 0.52 0.53 0.57 0.62 0.62 0.62 0.62 0.71 0.79 0.79 0.79 ns
HSLVDCI_15_S 0.43 0.46 0.52 0.52 0.52 0.58 0.64 0.69 0.69 0.69 0.70 0.79 0.88 0.88 0.88 ns
HSLVDCI_18_F 0.43 0.46 0.52 0.52 0.52 0.48 0.53 0.57 0.57 0.57 0.57 0.65 0.71 0.71 0.71 ns
HSLVDCI_18_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.62 0.62 0.62 0.62 0.71 0.79 0.79 0.79 ns
HSLVDCI_18_S 0.43 0.46 0.52 0.52 0.52 0.58 0.64 0.69 0.69 0.69 0.70 0.80 0.90 0.90 0.90 ns
HSTL_I_12_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
HSTL_I_12_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSTL_I_12_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
HSTL_I_18_F 0.43 0.46 0.52 0.52 0.52 0.47 0.51 0.55 0.55 0.55 0.55 0.63 0.70 0.70 0.70 ns
HSTL_I_18_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSTL_I_18_S 0.43 0.46 0.52 0.52 0.52 0.58 0.63 0.69 0.69 0.69 0.69 0.78 0.88 0.88 0.88 ns
HSTL_I_DCI_12_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
HSTL_I_DCI_12_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSTL_I_DCI_12_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
HSTL_I_DCI_18_F 0.43 0.46 0.52 0.52 0.52 0.47 0.51 0.55 0.55 0.55 0.55 0.63 0.70 0.70 0.70 ns
HSTL_I_DCI_18_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSTL_I_DCI_18_S 0.43 0.46 0.52 0.52 0.52 0.58 0.63 0.69 0.69 0.69 0.69 0.78 0.88 0.88 0.88 ns
HSTL_I_DCI_F 0.43 0.46 0.52 0.52 0.52 0.47 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
HSTL_I_DCI_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
Table 28: IOB High Performance (HP) Switching Characteristics (Cont’d)
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 29
HSTL_I_DCI_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
HSTL_I_F 0.43 0.46 0.52 0.52 0.52 0.47 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
HSTL_I_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSTL_I_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
HSUL_12_DCI_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
HSUL_12_DCI_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSUL_12_DCI_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
HSUL_12_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
HSUL_12_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
HSUL_12_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
LVCMOS12_F_2 0.56 0.66 0.74 0.76 0.74 0.67 0.73 0.79 0.79 0.79 0.67 0.73 0.79 0.79 0.79 ns
LVCMOS12_F_4 0.56 0.66 0.74 0.76 0.74 0.63 0.68 0.73 0.73 0.73 0.63 0.68 0.73 0.73 0.73 ns
LVCMOS12_F_6 0.56 0.66 0.74 0.76 0.74 0.59 0.64 0.69 0.69 0.69 0.59 0.65 0.72 0.72 0.72 ns
LVCMOS12_F_8 0.56 0.66 0.74 0.76 0.74 0.57 0.63 0.67 0.67 0.67 0.59 0.66 0.72 0.72 0.72 ns
LVCMOS12_M_2 0.56 0.66 0.74 0.76 0.74 0.72 0.79 0.85 0.85 0.85 0.72 0.79 0.85 0.85 0.85 ns
LVCMOS12_M_4 0.56 0.66 0.74 0.76 0.74 0.66 0.71 0.77 0.77 0.77 0.66 0.71 0.77 0.77 0.77 ns
LVCMOS12_M_6 0.56 0.66 0.74 0.76 0.74 0.62 0.67 0.72 0.72 0.72 0.62 0.69 0.75 0.75 0.75 ns
LVCMOS12_M_8 0.56 0.66 0.74 0.76 0.74 0.62 0.67 0.72 0.72 0.72 0.64 0.71 0.78 0.78 0.78 ns
LVCMOS12_S_2 0.56 0.66 0.74 0.76 0.74 0.77 0.89 0.96 0.96 0.96 0.77 0.89 0.96 0.96 0.96 ns
LVCMOS12_S_4 0.56 0.66 0.74 0.76 0.74 0.68 0.74 0.79 0.79 0.79 0.68 0.74 0.79 0.79 0.79 ns
LVCMOS12_S_6 0.56 0.66 0.74 0.76 0.74 0.66 0.72 0.78 0.78 0.78 0.66 0.72 0.79 0.79 0.79 ns
LVCMOS12_S_8 0.56 0.66 0.74 0.76 0.74 0.66 0.72 0.77 0.77 0.77 0.67 0.74 0.82 0.82 0.82 ns
LVCMOS15_F_12 0.450.520.580.600.580.610.660.710.710.710.660.730.810.810.81 ns
LVCMOS15_F_2 0.45 0.52 0.58 0.60 0.58 0.73 0.77 0.83 0.83 0.83 0.73 0.77 0.83 0.83 0.83 ns
LVCMOS15_F_4 0.45 0.52 0.58 0.60 0.58 0.69 0.73 0.78 0.78 0.78 0.69 0.73 0.78 0.78 0.78 ns
LVCMOS15_F_6 0.45 0.52 0.58 0.60 0.58 0.63 0.68 0.73 0.73 0.73 0.63 0.70 0.77 0.77 0.77 ns
LVCMOS15_F_8 0.45 0.52 0.58 0.60 0.58 0.61 0.66 0.72 0.72 0.72 0.63 0.71 0.78 0.78 0.78 ns
LVCMOS15_M_12 0.45 0.52 0.58 0.60 0.58 0.63 0.69 0.75 0.75 0.75 0.67 0.77 0.85 0.85 0.85 ns
LVCMOS15_M_2 0.45 0.52 0.58 0.60 0.58 0.77 0.80 0.86 0.86 0.86 0.77 0.80 0.86 0.86 0.86 ns
LVCMOS15_M_4 0.45 0.52 0.58 0.60 0.58 0.72 0.76 0.82 0.82 0.82 0.72 0.76 0.82 0.82 0.82 ns
LVCMOS15_M_6 0.45 0.52 0.58 0.60 0.58 0.67 0.72 0.78 0.78 0.78 0.67 0.74 0.82 0.82 0.82 ns
LVCMOS15_M_8 0.45 0.52 0.58 0.60 0.58 0.65 0.71 0.76 0.76 0.76 0.65 0.76 0.83 0.83 0.83 ns
LVCMOS15_S_12 0.45 0.52 0.58 0.60 0.58 0.65 0.70 0.75 0.75 0.75 0.67 0.75 0.83 0.83 0.83 ns
LVCMOS15_S_2 0.45 0.52 0.58 0.60 0.58 0.78 0.85 0.91 0.91 0.91 0.78 0.85 0.91 0.91 0.91 ns
LVCMOS15_S_4 0.45 0.52 0.58 0.60 0.58 0.74 0.78 0.84 0.84 0.84 0.74 0.78 0.84 0.84 0.84 ns
LVCMOS15_S_6 0.45 0.52 0.58 0.60 0.58 0.72 0.76 0.82 0.82 0.82 0.72 0.76 0.84 0.84 0.84 ns
LVCMOS15_S_8 0.45 0.52 0.58 0.60 0.58 0.68 0.73 0.79 0.79 0.79 0.68 0.75 0.83 0.83 0.83 ns
LVCMOS18_F_12 0.430.490.540.550.540.670.720.780.780.780.670.810.900.900.90 ns
LVCMOS18_F_2 0.43 0.49 0.54 0.55 0.54 0.94 1.07 1.15 1.15 1.15 0.94 1.07 1.15 1.15 1.15 ns
LVCMOS18_F_4 0.43 0.49 0.54 0.55 0.54 0.78 0.82 0.89 0.89 0.89 0.78 0.82 0.89 0.89 0.89 ns
Table 28: IOB High Performance (HP) Switching Characteristics (Cont’d)
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 30
LVCMOS18_F_6 0.43 0.49 0.54 0.55 0.54 0.72 0.77 0.83 0.83 0.83 0.72 0.79 0.88 0.88 0.88 ns
LVCMOS18_F_8 0.43 0.49 0.54 0.55 0.54 0.70 0.75 0.81 0.81 0.81 0.72 0.81 0.89 0.89 0.89 ns
LVCMOS18_M_12 0.43 0.49 0.54 0.55 0.54 0.70 0.76 0.81 0.81 0.81 0.74 0.83 0.92 0.92 0.92 ns
LVCMOS18_M_2 0.43 0.49 0.54 0.55 0.54 0.99 1.10 1.19 1.19 1.19 0.99 1.10 1.19 1.19 1.19 ns
LVCMOS18_M_4 0.43 0.49 0.54 0.55 0.54 0.82 0.86 0.92 0.92 0.92 0.82 0.86 0.92 0.92 0.92 ns
LVCMOS18_M_6 0.43 0.49 0.54 0.55 0.54 0.75 0.80 0.87 0.87 0.87 0.75 0.81 0.90 0.90 0.90 ns
LVCMOS18_M_8 0.43 0.49 0.54 0.55 0.54 0.73 0.78 0.85 0.85 0.85 0.73 0.83 0.92 0.92 0.92 ns
LVCMOS18_S_12 0.43 0.49 0.54 0.55 0.54 0.74 0.78 0.84 0.84 0.84 0.76 0.83 0.92 0.92 0.92 ns
LVCMOS18_S_2 0.43 0.49 0.54 0.55 0.54 1.05 1.16 1.25 1.25 1.25 1.05 1.16 1.25 1.25 1.25 ns
LVCMOS18_S_4 0.43 0.49 0.54 0.55 0.54 0.83 0.86 0.93 0.93 0.93 0.83 0.86 0.93 0.93 0.93 ns
LVCMOS18_S_6 0.43 0.49 0.54 0.55 0.54 0.79 0.82 0.89 0.89 0.89 0.79 0.82 0.90 0.90 0.90 ns
LVCMOS18_S_8 0.43 0.49 0.54 0.55 0.54 0.75 0.80 0.86 0.86 0.86 0.75 0.82 0.90 0.90 0.90 ns
LVDCI_15_F 0.45 0.52 0.58 0.60 0.58 0.48 0.53 0.56 0.56 0.56 0.57 0.64 0.71 0.71 0.71 ns
LVDCI_15_M 0.45 0.52 0.58 0.60 0.58 0.53 0.57 0.62 0.62 0.62 0.62 0.71 0.79 0.79 0.79 ns
LVDCI_15_S 0.45 0.52 0.58 0.60 0.58 0.58 0.64 0.69 0.69 0.69 0.70 0.79 0.88 0.88 0.88 ns
LVDCI_18_F 0.43 0.49 0.54 0.55 0.54 0.48 0.53 0.57 0.57 0.57 0.57 0.65 0.71 0.71 0.71 ns
LVDCI_18_M 0.43 0.49 0.54 0.55 0.54 0.52 0.57 0.62 0.62 0.62 0.62 0.71 0.79 0.79 0.79 ns
LVDCI_18_S 0.43 0.49 0.54 0.55 0.54 0.58 0.64 0.69 0.69 0.69 0.70 0.80 0.90 0.90 0.90 ns
LVDS 0.42 0.46 0.51 0.51 0.51 0.57 0.67 0.72 0.72 0.72
890.24 890.26 890.28 890.28 890.28
ns
POD10_DCI_F 0.430.460.520.520.520.480.520.560.560.560.590.670.740.740.74 ns
POD10_DCI_M 0.430.460.520.520.520.540.600.650.650.650.640.730.810.810.81 ns
POD10_DCI_S 0.430.460.520.520.520.630.690.760.760.760.710.810.890.890.89 ns
POD10_F 0.430.460.520.520.520.480.520.560.560.560.590.670.740.740.74 ns
POD10_M 0.430.460.520.520.520.540.600.650.650.650.640.730.810.810.81 ns
POD10_S 0.430.460.520.520.520.630.690.760.760.760.710.810.890.890.89 ns
POD12_DCI_F 0.430.460.520.520.520.480.520.560.560.560.590.670.740.740.74 ns
POD12_DCI_M 0.430.460.520.520.520.540.600.650.650.650.640.730.810.810.81 ns
POD12_DCI_S 0.430.460.520.520.520.630.690.760.760.760.710.810.890.890.89 ns
POD12_F 0.430.460.520.520.520.480.520.560.560.560.590.670.740.740.74 ns
POD12_M 0.430.460.520.520.520.540.600.650.650.650.640.730.810.810.81 ns
POD12_S 0.430.460.520.520.520.630.690.760.760.760.710.810.890.890.89 ns
SLVS_400_18 0.42 0.46 0.51 0.51 0.51 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A ns
SSTL12_DCI_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
SSTL12_DCI_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL12_DCI_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
SSTL12_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
SSTL12_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL12_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
SSTL135_DCI_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.64 0.70 0.70 0.70 ns
SSTL135_DCI_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
Table 28: IOB High Performance (HP) Switching Characteristics (Cont’d)
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 31
Table 2 9 specifies the values of TOUTBUF_DELAY_TE_PAD and TINBUF_DELAY_IBUFDIS_O. TOUTBUF_DELAY_TE_PAD is the
delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e.,
a high impedance state). TINBUF_DELAY_IBUFDIS_O is the IOB delay from IBUFDISABLE to O output. In HP I/O
banks, the internal DCI termination turn-off time is always faster than TOUTBUF_DELAY_TE_PAD when the
DCITERMDISABLE pin is used. In HR I/O banks, the internal IN_TERM termination turn-off time is always
faster than TOUTBUF_DELAY_TE_PAD when the INTERMDISABLE pin is used.
SSTL135_DCI_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
SSTL135_F 0.43 0.46 0.52 0.52 0.52 0.48 0.52 0.56 0.56 0.56 0.56 0.64 0.70 0.70 0.70 ns
SSTL135_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL135_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
SSTL15_DCI_F 0.43 0.46 0.52 0.52 0.52 0.47 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
SSTL15_DCI_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL15_DCI_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
SSTL15_F 0.43 0.46 0.52 0.52 0.52 0.47 0.52 0.56 0.56 0.56 0.56 0.63 0.70 0.70 0.70 ns
SSTL15_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL15_S 0.43 0.46 0.52 0.52 0.52 0.57 0.63 0.68 0.68 0.68 0.69 0.78 0.87 0.87 0.87 ns
SSTL18_I_DCI_F 0.43 0.46 0.52 0.52 0.52 0.47 0.51 0.55 0.55 0.55 0.55 0.63 0.70 0.70 0.70 ns
SSTL18_I_DCI_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL18_I_DCI_S 0.43 0.46 0.52 0.52 0.52 0.58 0.63 0.69 0.69 0.69 0.69 0.78 0.88 0.88 0.88 ns
SSTL18_I_F 0.43 0.46 0.52 0.52 0.52 0.47 0.51 0.55 0.55 0.55 0.55 0.63 0.70 0.70 0.70 ns
SSTL18_I_M 0.43 0.46 0.52 0.52 0.52 0.52 0.57 0.61 0.61 0.61 0.61 0.70 0.78 0.78 0.78 ns
SSTL18_I_S 0.43 0.46 0.52 0.52 0.52 0.58 0.63 0.69 0.69 0.69 0.69 0.78 0.88 0.88 0.88 ns
SUB_LVDS 0.42 0.46 0.51 0.51 0.51 0.57 0.67 0.72 0.72 0.72
890.24 890.26 890.28 890.28 890.28
ns
Table 29: IOB 3-state Output Switching Characteristics
Symbol Description
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
TOUTBUF_DELAY_TE_PAD(1) T input to pad high-impedance for HR I/O banks 1.37 1.52 1.69 1.69 ns
T input to pad high-impedance for HP I/O banks 0.62 0.71 0.78 0.78 ns
TINBUF_DELAY_IBUFDIS_O
IBUF turn-on time from IBUFDISABLE to O output
for HR I/O banks 0.47 0.65 0.68 0.68 ns
IBUF turn-on time from IBUFDISABLE to O output
for HP I/O banks 1.06 1.21 1.49 1.49 ns
Notes:
1. The TOUTBUF_DELAY_TE_PAD values are applicable to single-ended I/O standards. For true differential standards, the values
are larger. Use the Vivado timing report for the most accurate timing values for your configuration.
Table 28: IOB High Performance (HP) Switching Characteristics (Cont’d)
I/O Standards
TINBUF_DELAY_PAD_I TOUTBUF_DELAY_O_PAD TOUTBUF_DELAY_TD_PAD
Units
1.0V 0.95V 0.9V 1.0V 0.95V 0.9V 1.0V 0.95V 0.9V
-3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L -3 -2 -1/
-1L -1M -1L
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 32
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Table 3 0 shows the test setup parameters used for measuring input delay.
Table 30: Input Delay Measurement Methodology
Description I/O Standard
Attribute VL(1)(2) VH(1)(2) VMEAS
(1)(4)(6) VREF
(1)(3)(5)
LVCMOS, 1.2V LVCMOS12 0.1 1.1 0.6
LVCMOS, LVDCI, HSLVDCI, 1.5V LVCMOS15,
LVDCI_15,
HSLVDCI_15 0.1 1.4 0.75 –
LVCMOS, LVDCI, HSLVDCI, 1.8V LVCMOS18,
LVDCI_18,
HSLVDCI_18 0.1 1.7 0.9 –
LVCMOS, 2.5V LVCMOS25 0.1 2.4 1.25
LVCMOS, 3.3V LVCMOS33 0.1 3.2 1.65
LVTTL, 3.3V LVTTL 0.1 3.2 1.65
HSTL (high-speed transceiver logic),
Class I, 1.2V HSTL_I_12 VREF –0.5 V
REF +0.5 V
REF 0.60
HSTL, Class I and II, 1.5V HSTL_I, HSTL_II VREF –0.65 V
REF +0.65 V
REF 0.75
HSTL, Class I and II, 1.8V HSTL_I_18,
HSTL_II_18 VREF –0.8 V
REF +0.8 V
REF 0.90
HSUL (high-speed unterminated logic), 1.2V HSUL_12 VREF –0.5 V
REF +0.5 V
REF 0.60
SSTL (stub series terminated logic), 1.2V SSTL12 VREF –0.5 V
REF +0.5 V
REF 0.60
SSTL, 1.35V SSTL135, SSTL135_R VREF – 0.575 VREF +0.575 V
REF 0.675
SSTL, 1.5V SSTL15, SSTL15_R VREF –0.65 V
REF +0.65 V
REF 0.75
SSTL, Class I and II, 1.8V SSTL18_I, SSTL18_II VREF –0.8 V
REF +0.8 V
REF 0.90
POD10, 1.0V POD10 VREF –0.6 V
REF +0.6 V
REF 0.70
POD12, 1.2V POD12 VREF –0.74 V
REF +0.74 V
REF 0.84
DIFF_HSTL, Class I, 1.2V DIFF_HSTL_I_12 0.6 – 0.125 0.6 + 0.125 0(6)
DIFF_HSTL, Class I and II,1.5V DIFF_HSTL_I,
DIFF_HSTL_II 0.75 – 0.125 0.75 + 0.125 0(6)
DIFF_HSTL, Class I and II, 1.8V DIFF_HSTL_I_18,
DIFF_HSTL_II_18 0.9 – 0.125 0.9 + 0.125 0(6)
DIFF_HSUL, 1.2V DIFF_HSUL_12 0.6 – 0.125 0.6 + 0.125 0(6)
DIFF_SSTL, 1.2V DIFF_SSTL12 0.6 – 0.125 0.6 + 0.125 0(6)
DIFF_SSTL135/DIFF_SSTL135_R, 1.35V DIFF_SSTL135,
DIFF_SSTL135_R 0.675 –
0.125 0.675 +
0.125 0(6)
DIFF_SSTL15/DIFF_SSTL15_R, 1.5V DIFF_SSTL15,
DIFF_SSTL15_R 0.75 – 0.125 0.75 + 0.125 0(6)
DIFF_SSTL18_I/DIFF_SSTL18_II, 1.8V DIFF_SSTL18_I,
DIFF_SSTL18_II 0.9 – 0.125 0.9 + 0.125 0(6)
DIFF_POD10, 1.0V DIFF_POD10 0.70 – 0.125 0.70 + 0.125 0(6)
DIFF_POD12, 1.2V DIFF_POD12 0.84 – 0.125 0.84 + 0.125 0(6)
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 33
LVDS (low-voltage differential signaling),
1.8V LVDS 0.9 – 0.125 0.9 + 0.125 0(6)
LVDS_25, 2.5V LVDS_25 1.25 – 0.125 1.25 + 0.125 0(6)
SUB_LVDS, 1.8V SUB_LVDS 0.9 – 0.125 0.9 + 0.125 0(6)
SLVS, 1.8V SLVS_400_18 0.9 – 0.125 0.9 + 0.125 0(6)
SLVS, 2.5V SLVS_400_25 1.25 – 0.125 1.25 + 0.125 0(6)
LVPECL, 2.5 LVPECL 1.25 – 0.125 1.25 + 0.125 0(6)
BLVDS_25, 2.5V BLVDS_25 1.25 – 0.125 1.25 + 0.125 0(6)
MINI_LVDS_25, 2.5V MINI_LVDS_25 1.25 – 0.125 1.25 + 0.125 0(6)
PPDS_25 PPDS_25 1.25 – 0.125 1.25 + 0.125 0(6)
RSDS_25 RSDS_25 1.25 – 0.125 1.25 + 0.125 0(6)
TMDS_33 TMDS_33 3 – 0.125 3 + 0.125 0(6)
Notes:
1. The input delay measurement methodology parameters for LVDCI are the same for LVCMOS standards of the same
voltage. Input delay measurement methodology parameters for HSLVDCI are the same as for HSTL_II standards of the
same voltage. Parameters for all other DCI standards are the same for the corresponding non-DCI standards.
2. Input waveform switches between VLand VH.
3. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these
measurements. VREF values listed are typical.
4. Input voltage level from which measurement starts.
5. This is an input voltage reference that bears no relation to the VREF/VMEAS parameters found in IBIS models and/or noted
in Figure 1.
6. The value given is the differential input voltage.
Table 30: Input Delay Measurement Methodology (Cont’d)
Description I/O Standard
Attribute VL(1)(2) VH(1)(2) VMEAS
(1)(4)(6) VREF
(1)(3)(5)
(I XILINX u Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 34
Output Delay Measurements
Output delays are measured with short output traces. Standard termination was used for all testing. The
propagation delay of the trace is characterized separately and subtracted from the final measurement, and
is therefore not included in the generalized test setups shown in Figure 1 and Figure 2.
Parameters VREF, RREF, CREF, and VMEAS fully describe the test conditions for each I/O standard. The most
accurate prediction of propagation delay in any given application can be obtained through IBIS
simulation, using this method:
1. Simulate the output driver of choice into the generalized test setup using values from Tab l e 31.
2. Record the time to VMEAS.
3. Simulate the output driver of choice into the actual PCB trace and load using the appropriate IBIS
model or capacitance value to represent the load.
4. Record the time to VMEAS.
5. Compare the results of step 2 and step 4. The increase or decrease in delay yields the actual
propagation delay of the PCB trace.
X-Ref Target - Fig ure 1
Figure 1: Single-Ended Test Setup
X-Ref Target - Fig ure 2
Figure 2: Differential Test Setup
VREF
RREF
VMEAS (voltage level when taking delay measurement)
CREF (probe capacitance)
FPGA Output
DS892_01_120414
RREF VMEAS
+
CREF
FPGA Output
DS892_02_120414
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 35
Table 31: Output Delay Measurement Methodology
Description I/O Standard Attribute RREF
()CREF(1)
(pF) VMEAS
(V) VREF
(V)
LVCMOS, 1.2V LVCMOS12 1M 0 0.6 0
LVCMOS 1.5V LVCMOS15 1M 0 0.75 0
LVCMOS 1.8V LVCMOS18 1M 0 0.9 0
LVCMOS, 2.5V LVCMOS25 1M 0 1.25 0
LVCMOS, 3.3V LVCMOS33 1M 0 1.65 0
LVTTL, 3.3V LVTTL 1M 0 1.65 0
LVDCI/HSLVDCI, 1.5V LVDCI_15, HSLVDCI_15 50 0 VREF 0.75
LVDCI/HSLVDCI, 1.8V LVDCI_18, HSLVDCI_18 50 0 VREF 0.9
HSTL (high-speed transceiver logic), Class I, 1.2V HSTL_I_12 50 0 VREF 0.6
HSTL, Class I, 1.5V HSTL_I 50 0 VREF 0.75
HSTL, Class II, 1.5V HSTL_II 25 0 VREF 0.75
HSTL, Class I, 1.8V HSTL_I_18 50 0 VREF 0.9
HSTL, Class II, 1.8V HSTL_II_18 25 0 VREF 0.9
HSUL (high-speed unterminated logic), 1.2V HSUL_12 50 0 VREF 0.6
SSTL12, 1.2V SSTL12 50 0 VREF 0.6
SSTL135/SSTL135_R, 1.35V SSTL135, SSTL135_R 50 0 VREF 0.675
SSTL15/SSTL15_R, 1.5V SSTL15, SSTL15_R 50 0 VREF 0.75
SSTL (stub series terminated logic),
Class I and Class II, 1.8V SSTL18_I, SSTL18_II 50 0 VREF 0.9
POD10, 1.0V POD10 50 0 VREF 1.0
POD12, 1.2V POD12 50 0 VREF 1.2
DIFF_HSTL, Class I, 1.2V DIFF_HSTL_I_12 50 0 VREF 0.6
DIFF_HSTL, Class I and II, 1.5V DIFF_HSTL_I, DIFF_HSTL_II 50 0 VREF 0.75
DIFF_HSTL, Class I and II, 1.8V DIFF_HSTL_I_18,
DIFF_HSTL_II_18 50 0 VREF 0.9
DIFF_HSUL_12, 1.2V DIFF_HSUL_12 50 0 VREF 0.6
DIFF_SSTL12, 1.2V DIFF_SSTL12 50 0 VREF 0.6
DIFF_SSTL135/DIFF_SSTL135_R, 1.35V DIFF_SSTL135,
DIFF_SSTL135_R 50 0 VREF 0.675
DIFF_SSTL15/DIFF_SSTL15_R, 1.5V DIFF_SSTL15,
DIFF_SSTL15_R 50 0 VREF 0.75
DIFF_SSTL18, Class I and II, 1.8V DIFF_SSTL18_I,
DIFF_SSTL18_II 50 0 VREF 0.9
DIFF_POD10, 1.0V DIFF_POD10 50 0 VREF 1.0
DIFF_POD12, 1.2V DIFF_POD12 50 0 VREF 1.2
LVDS (low-voltage differential signaling), 1.8V LVDS 100 0 0(2) 0
LVDS, 2.5V LVDS_25 100 0 0(2) 0
BLVDS (Bus LVDS), 2.5V BLVDS_25 100 0 0(2) 0
Mini LVDS, 2.5V MINI_LVDS_25 100 0 0(2) 0
PPDS_25 PPDS_25 100 0 0(2) 0
RSDS_25 RSDS_25 100 0 0(2) 0
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 36
Block RAM and FIFO Switching Characteristics
SUB_LVDS SUB_LVDS 100 0 0(2) 0
TMDS_33 TMDS_33 50 0 0(2) 3.3
Notes:
1. CREF is the capacitance of the probe, nominally 0 pF.
2. The value given is the differential output voltage.
Table 32: Block RAM and FIFO Switching Characteristics
Symbol Description
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
Maximum Frequency
FMAX_WF_NC Block RAM
(Write First and No Change modes) 660 585 525 525 MHz
FMAX_RF Block RAM (Read First mode) 575 510 460 400 MHz
FMAX_FIFO FIFO in all modes without ECC 660 585 525 525 MHz
FMAX_ECC
Block RAM and FIFO in ECC configuration
without PIPELINE 530 450 390 390 MHz
Block RAM and FIFO in ECC configuration
with PIPELINE and Block RAM in Write First
or No Change mode. 660 585 525 525 MHz
Block RAM in ECC configuration in
Read First mode with PIPELINE 575 510 460 400 MHz
FMAX_ADDREN_RDADDRCHANGE Block RAM with address enable and read
address change compare turned on 575 510 460 400 MHz
TPW_WF_NC(1) Block RAM in WRITE_FIRST and
NO_CHANGE modes and FIFO.
Clock High/Low pulse width 758 855 952 952 ps, Min
TPW_RF(1) Block RAM in READ_FIRST modes.
Clock High/Low pulse width 870 980 1087 1250 ps, Min
Block RAM and FIFO Clock-to-Out Delays
TRCKO_DO Clock CLK to DOUT output (without output
register) 1.13 1.44 1.64 1.64 ns,
Max
TRCKO_DO_REG Clock CLK to DOUT output (with output
register) 0.37 0.44 0.49 0.49 ns,
Max
Notes:
1. The MMCM and PLL DUTY_CYCLE attribute should be set to 50% to meet the pulse width requirements at the higher
frequencies.
Table 31: Output Delay Measurement Methodology (Cont’d)
Description I/O Standard Attribute RREF
()CREF(1)
(pF) VMEAS
(V) VREF
(V)
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 37
Input/Output Delay Switching Characteristics
DSP48 Slice Switching Characteristics
Table 33: Input/Output Delay Switching Characteristics
Symbol Description
Speed Grade and VCCINT Operating Voltages
Units1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
FREFCLK
Reference clock frequency for
IDELAYCTRL (in component mode) 200 to 800 MHz
Reference clock frequency when
using BITSLICE_CONTROL with
REFCLK (in native mode (for
RX_BITSLICE only))
200 to 800 MHz
Reference clock frequency for
BITSLICE_CONTROL with PLL_CLK
(in native mode)(1) 200 to 2400 200 to 2400 200 to 2133 200 to 2133 MHz
TMINPER_CLK Minimum period for IODELAY CLK 2.740 2.740 3.160 3.160 ns
TMINPER_RST Minimum reset pulse width 52.00 ns
TIDELAY_RESOLUTION/
TODELAY_RESOLUTION IDELAY/ODELAY chain resolution 2.5 to 15 ps
Notes:
1. PLL settings could restrict the minimum allowable data rate. For example, when using a PLL with
CLKOUTPHY_MODE = VCO_HALF, the minimum frequency is PLL_FVCOMIN/2.
Table 34: DSP48 Slice Switching Characteristics
Symbol Description
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
Maximum Frequency
FMAX With all registers used 741 661 594 594 MHz
FMAX_PATDET With pattern detector 687 581 512 512 MHz
FMAX_MULT_NOMREG Two register multiply without MREG 462 429 361 361 MHz
FMAX_MULT_NOMREG_PATDET Two register multiply without MREG with
pattern detect 428 387 326 326 MHz
FMAX_PREADD_NOADREG Without ADREG 468 429 358 358 MHz
FMAX_NOPIPELINEREG Without pipeline registers (MREG, ADREG) 335 312 260 260 MHz
FMAX_NOPIPELINEREG_PATDET Without pipeline registers (MREG, ADREG)
with pattern detect 316 286 238 238 MHz
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 38
Clock Buffers and Networks
Table 35: Clock Buffers Switching Characteristics
Symbol Description
Speed Grade and
VCCINT Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
Global Clock Switching Characteristics (Including BUFGCTRL)
FMAX Maximum frequency of a global clock tree (BUFG) 850 725 630 630 MHz
Global Clock Buffer with Input Divide Capability (BUFGCE_DIV)
FMAX Maximum frequency of a global clock buffer with input
divide capability (BUFGCE_DIV) 850 725 630 630 MHz
Global Clock Buffer with Clock Enable (BUFGCE)
FMAX Maximum frequency of a global clock buffer with clock
enable (BUFGCE) 850 725 630 630 MHz
Leaf Clock Buffer with Clock Enable (BUFCE_LEAF)
FMAX Maximum frequency of a leaf clock buffer with clock
enable (BUFCE_LEAF) 850 725 630 630 MHz
GTH/GTY Clock Buffer with Clock Enable and Clock Input Divide Capability (BUFG_GT)
FMAX Maximum frequency of a serial transceiver clock buffer
with clock enable and clock input divide capability 512 512 512 512 MHz
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 39
MMCM Switching Characteristics
Table 36: MMCM Specification
Symbol Description
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
MMCM_FINMAX Maximum input clock frequency 1066 933 800 800 MHz
MMCM_FINMIN Minimum input clock frequency 10 10 10 10 MHz
MMCM_FINJITTER Maximum input clock period jitter < 20% of clock input period or 1 ns Max
MMCM_FINDUTY
Input duty cycle range: 10–49 MHz 25–75 %
Input duty cycle range: 50–199 MHz 30–70 %
Input duty cycle range: 200–399 MHz 35–65 %
Input duty cycle range: 400–499 MHz 40–60 %
Input duty cycle range: >500 MHz 45–55 %
MMCM_FMIN_PSCLK Minimum dynamic phase shift clock frequency 0.01 0.01 0.01 0.01 MHz
MMCM_FMAX_PSCLK Maximum dynamic phase shift clock frequency 550 500 450 450 MHz
MMCM_FVCOMIN Minimum MMCM VCO frequency 600 600 600 600 MHz
MMCM_FVCOMAX Maximum MMCM VCO frequency 1600 1440 1200 1200 MHz
MMCM_FBANDWIDTH Low MMCM bandwidth at typical(1) 1.00 1.00 1.00 1.00 MHz
High MMCM bandwidth at typical(1) 4.00 4.00 4.00 4.00 MHz
MMCM_TSTATPHAOFFSET Static phase offset of the MMCM outputs(2) 0.12 0.12 0.12 0.12 ns
MMCM_TOUTJITTER MMCM output jitter Note 3
MMCM_TOUTDUTY MMCM output clock duty cycle precision(4) 0.165 0.20 0.20 0.20 ns
MMCM_TLOCKMAX
MMCM maximum lock time for MMCM_FPFDMIN
frequencies above 20 MHz 100 100 100 100 µs
MMCM maximum lock time for MMCM_FPFDMIN
frequencies from 10 MHz to 20 MHz 200 200 200 200 µs
MMCM_FOUTMAX MMCM maximum output frequency 850 725 630 630 MHz
MMCM_FOUTMIN MMCM minimum output frequency(4)(5) 4.69 4.69 4.69 4.69 MHz
MMCM_TEXTFDVAR External clock feedback variation < 20% of clock input period or 1 ns Max
MMCM_RSTMINPULSE Minimum reset pulse width 5.00 5.00 5.00 5.00 ns
MMCM_FPFDMAX Maximum frequency at the phase frequency
detector 550 500 450 450 MHz
MMCM_FPFDMIN Minimum frequency at the phase frequency
detector 10 10 10 10 MHz
MMCM_TFBDELAY Maximum delay in the feedback path 5 ns Max or one clock cycle
MMCM_FDRPCLK_MAX Maximum DRP clock frequency 200 200 200 200 MHz
Notes:
1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter
frequencies.
2. The static offset is measured between any MMCM outputs with identical phase.
3. Values for this parameter are available in the Clocking Wizard.
4. Includes global clock buffer.
5. Calculated as FVCO/128 assuming output duty cycle is 50%.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 40
PLL Switching Characteristics
Table 37: PLL Specification(1)
Symbol Description
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1/-1L -1L
PLL_FINMAX Maximum input clock frequency 1066 933 800 800 MHz
PLL_FINMIN Minimum input clock frequency 70 70 70 70 MHz
PLL_FINJITTER Maximum input clock period jitter < 20% of clock input period or 1 ns Max
PLL_FINDUTY
Input duty cycle range: 70–399 MHz 35–65 %
Input duty cycle range: 400–499 MHz 40–60 %
Input duty cycle range: >500 MHz 45–55 %
PLL_FVCOMIN Minimum PLL VCO frequency 600 600 600 600 MHz
PLL_FVCOMAX Maximum PLL VCO frequency 1335 1335 1200 1200 MHz
PLL_TSTATPHAOFFSET Static phase offset of the PLL outputs(2) 0.12 0.12 0.12 0.12 ns
PLL_TOUTJITTER PLL output jitter Note 3
PLL_TOUTDUTY PLL CLKOUT0/CLKOUT0B/CLKOUT1/CLKOUT1B
duty-cycle precision(4) 0.1650.200.200.20 ns
PLL_TLOCKMAX PLL maximum lock time 100 µs
PLL_FOUTMAX
PLL maximum output frequency at
CLKOUT0/CLKOUT0B/CLKOUT1/CLKOUT1B 850 725 630 630 MHz
PLL maximum output frequency at CLKOUTPHY 2670 2670 2400 2400 MHz
PLL_FOUTMIN
PLL minimum output frequency at
CLKOUT0/CLKOUT0B/CLKOUT1/CLKOUT1B(5) 4.69 4.69 4.69 4.69 MHz
PLL minimum output frequency at CLKOUTPHY 2 x VCO mode: 1200
1 x VCO mode: 600
0.5 x VCO mode: 300 MHz
PLL_RSTMINPULSE Minimum reset pulse width 5.005.005.005.00 ns
PLL_FPFDMAX Maximum frequency at the phase frequency
detector 667.5 667.5 600 600 MHz
PLL_FPFDMIN Minimum frequency at the phase frequency
detector 70 70 70 70 MHz
PLL_FBANDWIDTH PLL bandwidth at typical 15 15 15 15 MHz
PLL_FDRPCLK_MAX Maximum DRP clock frequency 200 200 200 200 MHz
Notes:
1. The PLL does not filter typical spread-spectrum input clocks because they are usually far below the loop filter frequencies.
2. The static offset is measured between any PLL outputs with identical phase.
3. Values for this parameter are available in the Clocking Wizard.
4. Includes global clock buffer.
5. Calculated as FVCO/128 assuming output duty cycle is 50%.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 41
Device Pin-to-Pin Output Parameter Guidelines
The pin-to-pin numbers in Tab le 38 through Ta b le 41 are based on the clock root placement in the center
of the device. The actual pin-to-pin values will vary if the root placement selected is different. Consult the
Vivado Design Suite timing report for the actual pin-to-pin values.
Table 38: Global Clock Input to Output Delay Without MMCM/PLL (Near Clock Region)
Symbol Description Device
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
SSTL15 Global Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, without
MMCM/PLL.
TICKOF Global clock input and output flip-flop without
MMCM/PLL (near clock region) XCKU025 N/A 6.07 7.00 N/A N/A ns
XCKU0355.406.217.057.057.44 ns
XCKU0405.406.217.057.057.44 ns
XCKU0605.195.996.936.937.19 ns
XCKU0855.206.087.087.087.19 ns
XCKU095 N/A 6.09 7.13 N/A N/A ns
XCKU1155.206.087.087.087.19 ns
XQKU040 N/A 6.21 7.17 N/A N/A ns
XQKU060 N/A 5.99 6.93 N/A N/A ns
XQKU095 N/A 6.09 7.13 N/A N/A ns
XQKU115 N/A 6.08 7.08 N/A N/A ns
Notes:
1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column,
and where all accessible I/O and CLB flip-flops are clocked by the global clock net in a single SLR.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 42
Table 39: Global Clock Input to Output Delay Without MMCM/PLL (Far Clock Region)
Symbol Description Device
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
SSTL15 Global Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, without
MMCM/PLL.
TICKOF_FAR Global clock input and output flip-flop without
MMCM/PLL (far clock region) XCKU025 N/A 6.40 7.37 N/A N/A ns
XCKU035 5.84 6.73 7.64 7.64 8.09 ns
XCKU040 5.84 6.73 7.64 7.64 8.09 ns
XCKU060 5.94 6.84 7.91 7.91 8.22 ns
XCKU085 5.95 6.98 8.12 8.12 8.21 ns
XCKU095 N/A 6.67 7.69 N/A N/A ns
XCKU115 5.95 6.98 8.12 8.12 8.21 ns
XQKU040 N/A 6.73 7.75 N/A N/A ns
XQKU060 N/A 6.84 7.91 N/A N/A ns
XQKU095 N/A 6.67 7.69 N/A N/A ns
XQKU115 N/A 6.98 8.12 N/A N/A ns
Notes:
1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column,
and where all accessible I/O and CLB flip-flops are clocked by the global clock net in a single SLR.
Table 40: Global Clock Input to Output Delay With MMCM
Symbol Description Device
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
SSTL15 Global Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, with MMCM.
TICKOFMMCMCC Global clock input and output flip-flop with
MMCM XCKU025 N/A 1.80 1.88 N/A N/A ns
XCKU035 2.13 2.45 2.78 2.78 3.72 ns
XCKU040 2.13 2.45 2.78 2.78 3.72 ns
XCKU060 1.58 1.92 2.05 2.05 2.41 ns
XCKU085 1.58 1.95 2.12 2.12 2.41 ns
XCKU095 N/A 1.59 1.85 N/A N/A ns
XCKU115 1.58 1.95 2.12 2.12 2.41 ns
XQKU040 N/A 1.81 1.91 N/A N/A ns
XQKU060 N/A 1.92 2.05 N/A N/A ns
XQKU095 N/A 1.59 1.85 N/A N/A ns
XQKU115 N/A 1.95 2.12 N/A N/A ns
Notes:
1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column,
and where all accessible I/O and CLB flip-flops are clocked by the global clock net in a single SLR.
2. MMCM output jitter is already included in the timing calculation.
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 43
Table 41: Global Clock Input to Output Delay With PLL
Symbol Description Device
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
SSTL15 Global Clock Input to Output Delay using Output Flip-Flop, Fast Slew Rate, with PLL.
TICKOF_PLL_CC Global clock input and output flip-flop with
PLL XCKU025 N/A 5.39 6.11 N/A N/A ns
XCKU035 4.25 4.46 5.08 5.08 5.46 ns
XCKU040 4.25 4.46 5.08 5.08 5.46 ns
XCKU060 5.13 5.83 6.66 6.66 6.95 ns
XCKU085 5.14 5.96 6.85 6.85 6.96 ns
XCKU095 N/A 5.70 6.49 N/A N/A ns
XCKU115 5.14 5.96 6.85 6.85 6.96 ns
XQKU040 N/A 5.72 6.50 N/A N/A ns
XQKU060 N/A 5.83 6.66 N/A N/A ns
XQKU095 N/A 5.70 6.49 N/A N/A ns
XQKU115 N/A 5.96 6.85 N/A N/A ns
Notes:
1. This table lists representative values where one global clock input drives one vertical clock line in each accessible column,
and where all accessible I/O and CLB flip-flops are clocked by the global clock net in a single SLR.
2. PLL output jitter is already included in the timing calculation.
Table 42: Source Synchronous Output Characteristics (Component Mode)
Symbol Description
Speed Grade and VCCINT
Operating Voltages Units
1.0V 0.95V 0.90V
-3 -2 -1 -1L -1L
TOUTPUT_LOGIC_DELAY_VARIATION
Delay mismatch across a transmit
bus when using component mode
output logic (ODDRE1, OSERDESE3)
within a bank
100 ps
(I XILINX, (1)(2)(3) Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 44
Device Pin-to-Pin Input Parameter Guidelines
The pin-to-pin numbers in Tab le 43 through Ta b le 44 are based on the clock root placement in the center
of the device. The actual pin-to-pin values will vary if the root placement selected is different. Consult the
Vivado Design Suite timing report for the actual pin-to-pin values.
Table 43: Global Clock Input Setup and Hold With MMCM
Symbol Description Device
Speed Grade, VCCINT Operating Voltage,
and Temperature Range Units
1.0V 0.95V 0.90V
-3E -2E/I -1C/I -1M -1LI -1LI
Input Setup and Hold Time Relative to Global Clock Input Signal using SSTL15 Standard.(1)(2)(3)
TPSMMCMCC_KU025 Global clock input and
input flip-flop (or latch)
with MMCM
Setup XCKU025 N/A 2.16 2.51 N/A N/A N/A ns
TPHMMCMCC_KU025 Hold N/A –0.48 –0.48 N/A N/A N/A ns
TPSMMCMCC_KU035 Setup XCKU035 1.70 1.72 1.74 N/A 1.74 2.07 ns
TPHMMCMCC_KU035 Hold –0.23 –0.23 –0.23 N/A –0.23 –0.13 ns
TPSMMCMCC_KU040 Setup XCKU040 1.70 1.72 1.74 N/A 1.74 2.07 ns
TPHMMCMCC_KU040 Hold –0.23 –0.23 –0.23 N/A –0.23 –0.13 ns
TPSMMCMCC_KU060 Setup XCKU060 2.21 2.23 2.51 N/A 2.51 2.55 ns
TPHMMCMCC_KU060 Hold –0.47 –0.47 –0.47 N/A –0.47 –0.15 ns
TPSMMCMCC_KU085 Setup XCKU085 2.21 2.23 2.51 N/A 2.51 2.55 ns
TPHMMCMCC_KU085 Hold –0.37 –0.37 –0.37 N/A –0.37 –0.15 ns
TPSMMCMCC_KU095 Setup XCKU095 N/A 2.25 2.55 N/A N/A N/A ns
TPHMMCMCC_KU095 Hold N/A –0.47 –0.47 N/A N/A N/A ns
TPSMMCMCC_KU115 Setup XCKU115 2.21 2.23 2.51 N/A 2.51 2.55 ns
TPHMMCMCC_KU115 Hold –0.37 –0.37 –0.37 N/A –0.37 –0.15 ns
TPSMMCMCC_KU040 Setup XQKU040 N/A 2.23 2.58 2.60 N/A N/A ns
TPHMMCMCC_KU040 Hold N/A –0.45 –0.45 –0.45 N/A N/A ns
TPSMMCMCC_KU060 Setup XQKU060 N/A 2.23 2.51 2.52 N/A N/A ns
TPHMMCMCC_KU060 Hold N/A –0.47 –0.47 –0.47 N/A N/A ns
TPSMMCMCC_KU095 Setup XQKU095 N/A 2.25 2.55 2.56 N/A N/A ns
TPHMMCMCC_KU095 Hold N/A –0.47 –0.47 –0.47 N/A N/A ns
TPSMMCMCC_KU115 Setup XQKU115 N/A 2.23 2.51 N/A N/A N/A ns
TPHMMCMCC_KU115 Hold N/A –0.37 –0.37 N/A N/A N/A ns
Notes:
1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured
relative to the global clock input signal using the slowest process, slowest temperature, and slowest voltage. Hold time is
measured relative to the global clock input signal using the fastest process, fastest temperature, and fastest voltage.
2. This table lists representative values where one global clock input drives one vertical clock line in each accessible column,
and where all accessible I/O and CLB flip-flops are clocked by the global clock net in a single SLR.
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
(I XILINX, (1)(2)(3) Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 45
Table 44: Global Clock Input Setup and Hold With PLL
Symbol Description Device
Speed Grade, VCCINT Operating Voltage,
and Temperature Range Units
1.0V 0.95V 0.90V
-3 -2 -1 -1M -1L -1L
Input Setup and Hold Time Relative to Global Clock Input Signal using SSTL15 Standard.(1)(2)(3)
TPSPLLCC_KU025 Global clock input and
input flip-flop (or latch)
with PLL
Setup XCKU025 N/A –0.48 –0.48 N/A N/A N/A ns
TPHPLLCC_KU025 Hold N/A 2.42 2.70 N/A N/A N/A ns
TPSPLLCC_KU035 Setup XCKU035 0.00 0.00 0.00 N/A 0.00 0.00 ns
TPHPLLCC_KU035 Hold 1.36 1.59 1.79 N/A 1.79 1.79 ns
TPSPLLCC_KU040 Setup XCKU040 0.00 0.00 0.00 N/A 0.00 0.00 ns
TPHPLLCC_KU040 Hold 1.36 1.59 1.79 N/A 1.79 1.79 ns
TPSPLLCC_KU060 Setup XCKU060 0.70 –0.70 –0.70 N/A –0.70 –0.78 ns
TPHPLLCC_KU060 Hold 2.18 2.41 2.75 N/A 2.75 2.98 ns
TPSPLLCC_KU085 Setup XCKU085 0.66 –0.66 –0.66 N/A –0.66 –0.78 ns
TPHPLLCC_KU085 Hold 2.18 2.46 2.83 N/A 2.83 2.98 ns
TPSPLLCC_KU095 Setup XCKU095 N/A –0.94 –0.94 N/A N/A N/A ns
TPHPLLCC_KU095 Hold N/A 2.36 2.71 N/A N/A N/A ns
TPSPLLCC_KU115 Setup XCKU115 0.66 –0.66 –0.66 N/A –0.66 –0.78 ns
TPHPLLCC_KU115 Hold 2.18 2.46 2.83 N/A 2.83 2.98 ns
TPSPLLCC_KU040 Setup XQKU040 N/A –0.67 –0.67 –0.67 N/A N/A ns
TPHPLLCC_KU040 Hold N/A 2.48 2.83 2.84 N/A N/A ns
TPSPLLCC_KU060 Setup XQKU060 N/A –0.70 –0.70 –0.70 N/A N/A ns
TPHPLLCC_KU060 Hold N/A 2.41 2.75 2.75 N/A N/A ns
TPSPLLCC_KU095 Setup XQKU095 N/A –0.94 –0.94 –0.94 N/A N/A ns
TPHPLLCC_KU095 Hold N/A 2.36 2.71 2.71 N/A N/A ns
TPSPLLCC_KU115 Setup XQKU115 N/A –0.66 –0.66 N/A N/A N/A ns
TPHPLLCC_KU115 Hold N/A 2.46 2.83 N/A N/A N/A ns
Notes:
1. Setup and hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured
relative to the global clock input signal using the slowest process, slowest temperature, and slowest voltage. Hold time is
measured relative to the global clock input signal using the fastest process, fastest temperature, and fastest voltage.
2. This table lists representative values where one global clock input drives one vertical clock line in each accessible column,
and where all accessible I/O and CLB flip-flops are clocked by the global clock net in a single SLR.
3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
(I XILINX, ratmn These olution. The duw ca‘cu‘ XAPP1324 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 46
Table 45: Sampling Window
Symbol Description
Speed Grade and VCCINT Operating
Voltages Units
1.0V 0.95V 0.90V
-3 -2E -2I -1 -1L -1L
TSAMP_BUFG(1)
Total sampling error of the
Kintex UltraScale FPGAs DDR input
registers, measured across voltage,
temperature, and process
510 560 610 610 610 610 ps
TSAMP_NATIVE_DPA
Receive sampling error for
RX_BITSLICE when using dynamic
phase alignment 100 100 100 125 125 150 ps
TSAMP_NATIVE_BISC
Receive sampling error for
RX_BITSLICE when using built-in
self-calibration (BISC) 60 60 60 85 85 110 ps
Notes:
1. The characterization methodology uses the MMCM to capture the DDR input registers’ edges of operation. These
measurements include: CLK0 MMCM jitter, MMCM accuracy (phase offset), and MMCM phase shift resolution. These
measurements do not include package or clock tree skew. For detailed component mode sampling window calculations
using the parameters in this table, see the Designing Using SelectIO Interface Component Primitives (XAPP1324)
application note.
Table 46: Input Logic Characteristics for Dynamic Phase Aligned Applications (Component Mode)
Symbol Description
Speed Grade and VCCINT Operating
Voltages Units
1.0V 0.95V 0.90V
-3 -2E -2I -1 -1L -1L
TINPUT_LOGIC_UNCERTAINTY
Accounts for the setup/hold and any
pattern dependent jitter for the input
logic (input register, IDDRE1, or
ISERDESE3)
40 ps
TCAL_ERROR
Calibration error associated with
quantization effects based on the
IDELAY resolution. Calibration must be
performed for each input pin to ensure
optimal performance
24 ps
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 47
Package Parameter Guidelines
The parameters in this section provide the necessary values for calculating timing budgets for clock
transmitter and receiver data-valid windows.
Table 47: Package Skew
Symbol Description Device Package Value Units
PKGSKEW Package Skew
XCKU025 FFVA1156 162 ps
XCKU035
FBVA676 173 ps
SFVA784 134 ps
FBVA900 184 ps
FFVA1156 168 ps
XCKU040
FBVA676 173 ps
SFVA784 134 ps
FBVA900 184 ps
FFVA1156 168 ps
XCKU060 FFVA1156 168 ps
FFVA1517 169 ps
XCKU085
FLVA1517 217 ps
FLVB1760 175 ps
FLVF1924 143 ps
XCKU095
FFVA1156 162 ps
FFVC1517 181 ps
FFVB1760 128 ps
FFVB2104 191 ps
PKGSKEW
(cont’d) Package Skew
XCKU115
FLVA1517 217 ps
FLVD1517 143 ps
FLVB1760 177 ps
FLVD1924 172 ps
FLVF1924 143 ps
FLVA2104 184 ps
FLVB2104 198 ps
XQKU040 RBA676 178 ps
RFA1156 164 ps
XQKU060 RFA1156 170 ps
XQKU095 RFA1156 163 ps
XQKU115 RLD1517 147 ps
RLF1924 146 ps
Notes:
1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest delay to longest
delay from die pad to ball.
2. Package delay information is available for these device/package combinations. This information can be used to deskew the
package.
(I XILINX, H transc UGS76 mphasws‘ (UGS76 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 48
GTH Transceiver Specifications
GTH Transceiver DC Input and Output Levels
Table 4 8 summarizes the DC specifications of the GTH transceivers in Kintex UltraScale FPGAs. Consult the
UltraScale Architecture GTH Transceiver User Guide (UG576) for further details.
Table 48: GTH Transceiver DC Specifications
Symbol DC Parameter Conditions Min Typ Max Units
DVPPIN Differential peak-to-peak input
voltage (external AC coupled)
>10.3125 Gb/s 150 1250 mV
6.6 Gb/s to 10.3125 Gb/s 150 1250 mV
6.6 Gb/s 150 2000 mV
VIN
Single-ended input voltage.
Voltage measured at the pin
referenced to GND.
DC coupled
VMGTAVTT =1.2V –400 – VMGTAVTT mV
VCMIN Common mode input voltage DC coupled
VMGTAVTT =1.2V –2/3V
MGTAVTT –mV
DVPPOUT Differential peak-to-peak output
voltage(1) Transmitter output swing
is set to 1100 800 – mV
VCMOUTDC Common mode output voltage:
DC coupled (equation based)
When remote RX is
terminated to GND VMGTAVTT/2 – DVPPOUT/4 mV
When remote RX
termination is floating VMGTAVTT – DVPPOUT/2 mV
When remote RX is
terminated to VRX_TERM(2) mV
VCMOUTAC Common mode output voltage: AC coupled (equation based) VMGTAVTT – DVPPOUT/2 mV
RIN Differential input resistance 100
ROUT Differential output resistance 100
TOSKEW Transmitter output pair (TXP and TXN) intra-pair skew
(All packages) ––10ps
CEXT Recommended external AC coupling capacitor(3) 100 – nF
Notes:
1. The output swing and pre-emphasis levels are programmable using the attributes discussed in the UltraScale Architecture
GTH Transceiver User Guide (UG576), and can result in values lower than reported in this table.
2. VRX_TERM is the remote RX termination voltage.
3. Other values can be used as appropriate to conform to specific protocols and standards.
VMGTAVTT
DVPPOUT
4
------------------------
VMGTAVTT VRX_TERM
2
--------------------------------------------------------


Mxxxxw eeeeeeeeeeee
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 49
Table 4 9 and Table 5 0 summarize the DC specifications of the GTH transceivers input and output clocks in
Kintex UltraScale FPGAs. Consult the UltraScale Architecture GTH Transceiver User Guide (UG576) for
further details.
X-Ref Target - Fig ure 3
Figure 3: Single-Ended Peak-to-Peak Voltage
X-Ref Target - Fig ure 4
Figure 4: Differential Peak-to-Peak Voltage
Table 49: GTH Transceiver Clock DC Input Level Specification
Symbol DC Parameter Min Typ Max Units
VIDIFF Differential peak-to-peak input voltage 250 2000 mV
RIN Differential input resistance 100
CEXT Required external AC coupling capacitor 10 nF
Table 50: GTH Transceiver Clock Output Level Specification
Symbol Description Conditions Min Typ Max Units
VOL Output low voltage for P and N RT= 100 across P and N signals 400 mV
VOH Output high voltage for P and N RT= 100 across P and N signals 760 mV
VDDOUT
Differential output voltage
(PN), P = High
(N–P), N = High RT= 100 across P and N signals ±360 mV
VCMOUT Common mode voltage RT= 100 across P and N signals 580 mV
0
+V P
N
ds892_03_120414
Single-Ended
Peak-to-Peak
Voltage
(I XILINX, UGS76 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 50
GTH Transceiver Switching Characteristics
Consult the UltraScale Architecture GTH Transceiver User Guide (UG576) for further information.
Table 51: GTH Transceiver Performance
Symbol Description Output
Divider
Speed Grade, Temperature Ranges,
and VCCINT Operating Voltages
Units1.0V 0.95V 0.90V
-3E -2E, -2I -1C, -1I, -1M,
-1LI -1LI
Package Type FF/FL FB/SF FF/FL
RF/RL FB/SF
RB All Packages All Packages
FGTHMAX GTH maximum line rate 16.375 12.5 16.375 12.5 12.5 12.5(1) Gb/s
FGTHMIN GTH minimum line rate 0.5 0.5 0.5 0.5 0.5 0.5 Gb/s
Min Max Min Max Min Max Min Max
FGTHCRANGE CPLL line rate
range(2)
1 4.0 12.5 4.0 12.5 4.0 8.5 4.0 8.5 Gb/s
2 2.0 6.25 2.0 6.25 2.0 4.25 2.0 4.25 Gb/s
4 1.0 3.125 1.0 3.125 1.0 2.125 1.0 2.125 Gb/s
8 0.5 1.5625 0.5 1.5625 0.5 1.0625 0.5 1.0625 Gb/s
16 N/A Gb/s
Min Max Min Max Min Max Min Max
FGTHQRANGE1 QPLL0 line rate
range(3)
1 9.8 16.375 9.8 16.375 9.8 12.5 9.8 12.5 Gb/s
2 4.9 8.1875 4.9 8.1875 4.9 8.1875 4.9 8.1875 Gb/s
4 2.45 4.0938 2.45 4.0938 2.45 4.0938 2.45 4.0938 Gb/s
81.225 2.0469 1.225 2.0469 1.225 2.0469 1.225 2.0469 Gb/s
16 0.6125 1.0234 0.6125 1.0234 0.6125 1.0234 0.6125 1.0234 Gb/s
Min Max Min Max Min Max Min Max
FGTHQRANGE2 QPLL1 line rate
range(4)
1 8.0 13.0 8.0 13.0 8.0 12.5 8.0 12.5 Gb/s
2 4.0 6.5 4.0 6.5 4.0 6.5 4.0 6.5 Gb/s
4 2.0 3.25 2.0 3.25 2.0 3.25 2.0 3.25 Gb/s
8 1.0 1.625 1.0 1.625 1.0 1.625 1.0 1.625 Gb/s
16 0.5 0.8125 0.5 0.8125 0.5 0.8125 0.5 0.8125 Gb/s
Min Max Min Max Min Max Min Max
FCPLLRANGE CPLL frequency range 2.0 6.25 2.0 6.25 2.0 4.25 2.0 4.25 GHz
FQPLL0RANGE QPLL0 frequency range 9.8 16.375 9.8 16.375 9.8 16.375 9.8 16.375 GHz
FQPLL1RANGE QPLL1 frequency range 8.0 13.0 8.0 13.0 8.0 13.0 8.0 13.0 GHz
Notes:
1. Designs must use Vivado Design Suite v2015.4.1 or later to achieve 12.5 Gb/s.
2. The values listed are the rounded results of the calculated equation (2 x CPLL_Frequency)/Output_Divider.
3. The values listed are the rounded results of the calculated equation (QPLL0_Frequency)/Output_Divider.
4. The values listed are the rounded results of the calculated equation (QPLL1_Frequency)/Output_Divider.
Table 52: GTH Transceiver Dynamic Reconfiguration Port (DRP) Switching Characteristics
Symbol Description All Devices Units
FGTHDRPCLK GTHDRPCLK maximum frequency 250 MHz
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 51
Table 53: GTH Transceiver Reference Clock Switching Characteristics
Symbol Description Conditions Min Typ Max Units
FGCLK Reference clock frequency range 60 820 MHz
TRCLK Reference clock rise time 20% – 80% 200 ps
TFCLK Reference clock fall time 80% – 20% 200 ps
TDCREF Reference clock duty cycle Transceiver PLL only 40 50 60 %
X-Ref Target - Fig ure 5
Figure 5: Reference Clock Timing Parameters
Table 54: GTH Transceiver Reference Clock Oscillator Selection Phase Noise Mask
Symbol Description Offset
Frequency Min Typ Max Units
QPLLREFCLKMASK(1)(2) QPLL0/QPLL1 reference clock select
phase noise mask at
REFCLK frequency = 312.5 MHz.
10 kHz –105
dBc/Hz100 kHz –124
1 MHz –130
CPLLREFCLKMASK(1)(2) CPLL reference clock select phase noise
mask at REFCLK frequency = 312.5 MHz.
10 kHz –105
dBc/Hz
100 kHz –124
1 MHz –130
50 MHz –140
Notes:
1. For reference clock frequencies other than 312.5 MHz, adjust the phase-noise mask values by 20 x Log(N/312.5) where N
is the new reference clock frequency in MHz.
2. This reference clock phase-noise mask is superseded by any reference clock phase-noise mask that is specified in a
supported protocol, e.g., PCIe.
Table 55: GTH Transceiver PLL/Lock Time Adaptation
Symbol Description Conditions Min Typ Max Units
TLOCK Initial PLL lock 1 ms
TDLOCK
Clock recovery phase acquisition and
adaptation time for decision
feedback equalizer (DFE)
After the PLL is locked to
the reference clock, this is
the time it takes to lock
the clock data recovery
(CDR) to the data present
at the input
50,000 37 x 106UI
Clock recovery phase acquisition and
adaptation time for low-power mode
(LPM) when the DFE is disabled –50,0002.3x10
6UI
ds892_05_120414
80%
20%
TFCLK
TRCLK
(I XILINX, (UGS76 Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 52
Table 56: GTH Transceiver User Clock Switching Characteristics(1)
Symbol Description
Data Width Conditions
(Bit)
Speed Grade, Temperature Ranges,
and VCCINT Operating Voltages
Units1.0V 0.95V 0.90V
Internal
Logic Interconnect
Logic -3E -2E, -2I -1C, -1I,
-1M, -1LI -1LI
FTXOUTPMA TXOUTCLK maximum frequency sourced
from OUTCLKPMA 511.719 511.719 390.625 390.625 MHz
FRXOUTPMA RXOUTCLK maximum frequency sourced
from OUTCLKPMA 511.719 511.719 390.625 390.625 MHz
FTXOUTPROGDIV TXOUTCLK maximum frequency sourced
from TXPROGDIVCLK 511.719 511.719 511.719 511.719 MHz
FRXOUTPROGDIV RXOUTCLK maximum frequency sourced
from RXPROGDIVCLK 511.719 511.719 511.719 511.719 MHz
FTXIN
TXUSRCLK
maximum
frequency
16 16, 32 511.719 511.719 390.625 390.625 MHz
32 32, 64 511.719 511.719 390.625 390.625 MHz
20 20, 40 409.375 409.375 312.500 312.500 MHz
40 40, 80 409.375 409.375 312.500 312.500 MHz
FRXIN
RXUSRCLK
maximum
frequency
16 16, 32 511.719 511.719 390.625 390.625 MHz
32 32, 64 511.719 511.719 390.625 390.625 MHz
20 20, 40 409.375 409.375 312.500 312.500 MHz
40 40, 80 409.375 409.375 312.500 312.500 MHz
FTXIN2
TXUSRCLK2
maximum
frequency
16 16 511.719 511.719 390.625 390.625 MHz
16, 32 32 511.719 511.719 390.625 390.625 MHz
32 64 255.860 255.860 195.313 195.313 MHz
20 20 409.375 409.375 312.500 312.500 MHz
20, 40 40 409.375 409.375 312.500 312.500 MHz
40 80 204.688 204.688 156.250 156.250 MHz
FRXIN2
RXUSRCLK2
maximum
frequency
16 16 511.719 511.719 390.625 390.625 MHz
16, 32 32 511.719 511.719 390.625 390.625 MHz
32 64 255.860 255.860 195.313 195.313 MHz
20 20 409.375 409.375 312.500 312.500 MHz
20, 40 40 409.375 409.375 312.500 312.500 MHz
40 80 204.688 204.688 156.250 156.250 MHz
Notes:
1. Clocking must be implemented as described in UltraScale Architecture GTH Transceiver User Guide (UG576).
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 53
Table 57: GTH Transceiver Transmitter Switching Characteristics
Symbol Description Condition Min Typ Max Units
FGTHTX Serial data rate range 0.500 FGTHMAX Gb/s
TRTX TX rise time 20%–80% 21 ps
TFTX TX fall time 80%–20% 21 ps
TLLSKEW TX lane-to-lane skew(1) ––500ps
VTXOOBVDPP Electrical idle amplitude 15 mV
TTXOOBTRANSITION Electrical idle transition time 140 ns
TJ16.3_QPLL Total jitter(2)(4) 16.3 Gb/s 0.28 UI
DJ16.3_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ15_QPLL Total jitter(2)(4) 15.0 Gb/s 0.28 UI
DJ15_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ14.1_QPLL Total jitter(2)(4) 14.1 Gb/s 0.28 UI
DJ14.1_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ14.025_QPLL Total jitter(2)(4) 14.025 Gb/s 0.28 UI
DJ14.025_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ13.1_QPLL Total jitter(2)(4) 13.1 Gb/s 0.28 UI
DJ13.1_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ12.5_QPLL Total jitter(2)(4) 12.5 Gb/s 0.28 UI
DJ12.5_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ12.5_CPLL Total jitter(3)(4) 12.5 Gb/s 0.33 UI
DJ12.5_CPLL Deterministic jitter(3)(4) 0.17 UI
TJ11.3_QPLL Total jitter(2)(4) 11.3 Gb/s 0.28 UI
DJ11.3_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ10.3_QPLL Total jitter(2)(4) 10.3 Gb/s 0.28 UI
DJ10.3_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ10.3_CPLL Total jitter(3)(4) 10.3 Gb/s 0.33 UI
DJ10.3_CPLL Deterministic jitter(3)(4) 0.17 UI
TJ9.8_QPLL Total jitter(2)(4) 9.8 Gb/s 0.28 UI
DJ9.8_QPLL Deterministic jitter(2)(4) 0.17 UI
TJ9.8_CPLL Total jitter(3)(4) 9.8 Gb/s 0.28 UI
DJ9.8_CPLL Deterministic jitter(3)(4) 0.17 UI
TJ8.0_CPLL Total jitter(3)(4) 8.0 Gb/s 0.32 UI
DJ8.0_CPLL Deterministic jitter(3)(4) 0.17 UI
TJ6.6_CPLL Total jitter(3)(4) 6.6 Gb/s 0.30 UI
DJ6.6_CPLL Deterministic jitter(3)(4) 0.15 UI
TJ5.0 Total jitter(3)(4) 5.0 Gb/s 0.30 UI
DJ5.0 Deterministic jitter(3)(4) 0.15 UI
TJ4.25 Total jitter(3)(4) 4.25 Gb/s 0.30 UI
DJ4.25 Deterministic jitter(3)(4) 0.15 UI
TJ4.0L Total jitter(3)(4) 4.0 Gb/s(5) 0.32 UI
DJ4.0L Deterministic jitter(3)(4) 0.16 UI
(I XILINX, Send Feed back
Kintex UltraScale FPGAs Data Sheet: DC and AC Switching Characteristics
DS892 (v1.19) September 22, 2020 www.xilinx.com
Product Specification 54
TJ3.2 Total jitter(3)(4) 3.2 Gb/s(6) 0.20 UI
DJ3.2 Deterministic jitter(3)(4) 0.10 UI
TJ2.5 Total jitter(3)(4) 2.5 Gb/s(7) 0.20 UI
DJ2.5 Deterministic jitter(3)(4) 0.10 UI
TJ1.25 Total jitter(3)(4) 1.25 Gb/s(8) 0.15 UI
DJ1.25 Deterministic jitter(3)(4) 0.06 UI
TJ500 Total jitter(3)(4) 500 Mb/s(9) 0.10 UI
DJ500 Deterministic jitter(3)(4) 0.03 UI
Notes:
1. Using same REFCLK input with TX phase alignment enabled for up to four fully populated GTH Quads at maximum line rate.
2. Using QPLL_FBDIV = 40, 40-bit internal data width. These values are NOT intended for protocol specific compliance
determinations.
3. Using CPLL_FBDIV = 2, 40-bit internal data width. These values are NOT intended for protocol specific compliance
determinations.
4. All jitter values are based on a bit-error ratio of 10-12.
5. CPLL frequency at 2.0 GHz and TXOUT_DIV = 1
6. CPLL frequency at 3.2 GHz and TXOUT_DIV = 2.
7. CPLL frequency at 2.5 GHz and TXOUT_DIV = 2.
8. CPLL frequency at 2.5 GHz and TXOUT_DIV = 4.
9. CPLL frequency at 2.0 GHz and TXOUT_DIV = 4.
Table 58: GTH Transceiver Receiver Switching Characteristics
Symbol Description Condition Min Typ Max Units
FGTHRX Serial data rate 0.500 FGTHMAX Gb/s
TRXELECIDLE Time for RXELECIDLE to respond to loss or restoration of
data –10–ns
RXOOBVDPP OOB detect threshold peak-to-peak 60 150 mV
RXSST Receiver spread-spectrum tracking(1) Modulated at 33 kHz –5000 0 ppm
RXRL Run length (CID) 256 UI
RXPPMTOL Data/REFCLK PPM offset tolerance
Bit rates 6.6 Gb/s –1250 1250 ppm
Bit rates > 6.6 Gb/s
and 8.0 Gb/s 700 700 ppm
Bit rates > 8.0 Gb/s –200 200 ppm
SJ Jitter Tolerance(2)
JT_SJ16.3 Sinusoidal jitter (QPLL)(3) 16.3 Gb/s 0.30 UI
JT_SJ15 Sinusoidal jitter (QPLL)(3) 15.0 Gb/s 0.30 UI
JT_SJ14.1 Sinusoidal jitter (QPLL)(3) 14.1 Gb/s 0.30 UI
JT_SJ13.1 Sinusoidal jitter (QPLL)(3) 13.1 Gb/s 0.30 UI
JT_SJ12.5 Sinusoidal jitter (QPLL)(3) 12.5 Gb/s 0.30 UI
JT_SJ11.3 Sinusoidal jitter (QPLL)(3) 11.3 Gb/s 0.30 UI
JT_SJ10.3_QPLL Sinusoidal jitter (QPLL)(3) 10.3 Gb/s 0.30 UI
JT_SJ10.3_CPLL Sinusoidal jitter (CPLL)(3) 10.3 Gb/s 0.30 UI
JT_SJ9.8 Sinusoidal jitter (QPLL)(3) 9.8 Gb/s 0.30 UI
JT_SJ8.0_QPLL Sinusoidal jitter (QPLL)(3) 8.0 Gb/s 0.44 UI
Table 57: GTH Transceiver Transmitter Switching Characteristics (Cont’d)
Symbol Description Condition Min Typ Max Units